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Abstract 

The most precise relative positioning obtained using differential GPS depends on 

accurately determining carrier-phase integer ambiguities. In order to achieve high 

precision, many current static and kinematic surveying algorithms use a floating-point 

solution until enough information becomes available to fix the carrier-phase ambiguities 

accurately. However, in dynamic environments where many brief measurement outages 

or cycle slips are possible, these algorithms may never gain enough information to fix the 

ambiguities with the confidence required for a fixed-integer solution. 

A mew method is presented that uses a multiple model Kaiman filter to resolve the 

carrier-phase integer ambiguities. This method starts with the floating-point results, yet 

smoothly and rapidly attains the precision of the correct fixed-integer solution, 

eliminating the need to decide when to switch from the floating to the fixed-integer 

solution. This method is based on a theoretically correct blending of solutions from 

multiple filters, each of which hypothesizes a different ambiguity set. This new 

technique is computationally efficient, providing a robust navigation solution useful in 

demanding applications such as precision landing and autonomous navigation. 

The new method was evaluated during static ground and flight tests. Initial results 

indicate that the new method is capable of quickly resolving the carrier-phase 

ambiguities, transitioning smoothly to the true-fixed integer solution, and providing a 

highly accurate (centimeter-level) navigation solution. However, the performance of the 

new method depends on the correct carrier-phase ambiguity set being hypothesized by 

one of the multiple filters. Recommendations for further research are included. 
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DEVELOPMENT AND TESTING OF A 

MULTIPLE FILTER APPROACH FOR PRECISE DGPS 

POSITIONING AND CARRIER-PHASE AMBIGUITY RESOLUTION 

1 Introduction 

1.1    Background 

The Global Positioning System (GPS), a satellite based radio navigation system, has 

become the accepted, if not the standard, navigation system for much of the world. GPS 

is used for many navigation applications: marine, airborne, and land navigation, as well 

as in many surveying applications. This increasing dependence on GPS has also caused a 

desire for an increased accuracy of the GPS solution. 

GPS-determined position and velocity can be very accurate, but the accuracy depends 

on the type of receiver and the type of processing. Today's stand-alone civilian receivers 

(using only Coarse/Acquisition (C/A) code; see Section 1.4.2) have an accuracy of 

approximately 8-10 meters root-mean square (RMS) while military signal (P(Y); see 

Section 1.4.2) capable receivers have a slightly better accuracy of approximately 6-8 

meters RMS. 
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For many applications, the accuracy provided by stand-alone GPS is not sufficient. 

To attain better accuracy, many types of Differential GPS (DGPS) systems have been 

developed. These DGPS techniques do not perform absolute positioning, but instead 

perform relative positioning between GPS receivers. Differential GPS techniques are 

based on the principle that many of the errors in the GPS signal are spatially correlated 

between receivers. Relative positioning removes the majority of the correlated errors, 

providing a significant performance increase over stand-alone GPS. Differential GPS 

techniques can be categorized into two main types based on the types of measurements 

used: code-based and carrier-based. Representative position solutions and the 

approximate accuracy of various types of GPS and DGPS systems are presented in Figure 

1-1 and Table 1-1. For more detail the reader is referred to references [20, 34, 35]. 

10 
9 
8 

o 

ü I  5 
3  4 

2 
1 
0 

Stand-alone 

Code-based 

Floatinp^po nt carrier-phasev     Fixex^inteqer carrier-phase 

0 12 3 4 
Time (Minutes) 

Figure 1-1. Typical GPS/DGPS Solution Time Histories 
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Table 1-1. Typical GPS/DGPS Accuracies 

|      Accuracy 

Stand-alone 
GPS 

6-10 m 

Code based 
DGPS 
1-3 m 

Floating-Point 
CPDGPS 
0.2-0.5 m 

Fixed-Integer 
CPDGPS 

0.01-0.03 m 

Code-based DGPS techniques use the GPS "pseudorange" measurement. Code-based 

DGPS removes certain errors from the pseudorange measurements to provide an accurate 

position solution. The pseudorange measurement is obtained by the GPS receiver 

locking onto a GPS satellite's pseudorandom code. The GPS pseudorange measurement 

is essentially the difference between the time of transmission of the GPS signal from the 

satellite and the time of reception by the GPS receiver. The pseudorange measurement is 

an absolute range measurement between the receiver and the satellite, and therefore 

DGPS systems are relatively easy to implement. Code-based DGPS systems are widely in 

use today and have a relative positioning accuracy of approximately of 1-3 meters RMS, 

as shown in Figure 1-1. The United States Coast Guard operates a code-based DGPS 

system for precision marine navigation on most of the country's major waterways and 

harbors. Companies are also developing code-based DGPS system to monitor vehicles 

for a variety of applications such as mining, farming and cross-country trucking. 

Although widely in use today, code-based DGPS techniques are not the focus of this 

thesis. 

Although code-based DGPS system provide a significant increase in accuracy over 

stand-alone GPS, carrier-phase based DGPS techniques must be employed to achieve the 

highest level of accuracy (on the order of centimeters) demanded by some applications. 
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Carrier-phase based DGPS techniques are based on the phase, or carrier cycles, of the 

GPS carrier frequency. A GPS carrier-phase measurement is the difference between the 

receiver's internally generated carrier signal, and the carrier signal received from a 

satellite. Unfortunately, a GPS receiver cannot tell the difference between one carrier 

cycle and the next. The receiver only counts the change in cycles between itself and the 

satellite. This means the initial number of cycles, which is by nature an integer value, 

between the receiver and satellite is unknown, or ambiguous. Because the initial number 

of cycles is unknown, carrier-phase measurements are not absolute range measurements. 

In order to use carrier-phase measurements for positioning, the carrier-phase integer 

ambiguities must be somehow estimated or resolved. 

Floating-point carrier-phase DGPS techniques do not resolve carrier-phase 

ambiguities to their integer values, but simply estimate the carrier-phase ambiguities, 

generally using pseudorange measurements. The carrier-phase floating-point ambiguity 

estimates (which are not integer values) are then used to correct the carrier-phase 

measurements into absolute range measurements. Floating-point carrier-phase DGPS 

techniques use both pseudorange and carrier-phase measurement to generate an accurate 

relative position solution. Floating-point carrier-phase DGPS systems have a positioning 

accuracy of approximately 0.2 - 0.5 meters RMS. In addition, carrier-phase solutions 

tend to be "smoother" than code-based solutions, as shown in Figure 1-1. 

To obtain the highest level of accuracy available with GPS measurements, the carrier- 

phase integer ambiguities must be correctly resolved. Once resolved these "fixed- 

integer" based carrier-phase DGPS systems have a positioning accuracy of approximately 

0.01 - 0.03 meters RMS, as shown in Figure 1-1.   Carrier-phase DGPS systems are 
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widely in use today with surveying companies. In addition, these types of systems are 

being developed for precision navigation, control, and autonomous landing of 

commercial and military aircraft. 

Carrier-phase ambiguity resolution generally consists of two main functions, 

identifying possible ambiguity sets and determining which among these sets is correct. 

Numerous efficient methods have been developed to address the first part of the 

ambiguity resolution problem, and it is not the focus of this research. Additionally, many 

methods are currently available to determine the correct ambiguity set. Most current 

methods simply wait until enough information is obtained, by statistically comparing 

possible solutions, until the correct ambiguity set becomes evident. The disadvantage of 

this approach is it ignores the possibility of attaining a better position solution until the 

ambiguities are declared fixed. Some new efforts have explored the possibility of simply 

using the best set, namely the rounded floating-point ambiguity estimate, at each time 

step to obtain the optimal solution [8]. The disadvantage of this approach is that it relies 

only on a floating filter and ignores information available from other ambiguity set 

solutions and the information available from the time history of candidate ambiguity sets. 

The disadvantages of both these approaches lend themselves to the use of Kaiman 

filter techniques in determining the correct ambiguity set. This work provides a 

development and analysis of using multiple model adaptive Kaiman filter techniques 

[22, 25] for the ambiguity resolution problem. 
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1.2 Problem Definition 

The primary goal of this thesis is the development and testing of a new methodology 

to resolve carrier-phase ambiguities using advanced Kaiman filtering techniques. The 

specific techniques are discussed in detail in Section 2.5.3. The secondary goal is the 

development and testing of a carrier-phase based DGPS system accurate enough to be 

used as a navigation truth source for airborne applications. The new methodology must: 

• Accurately determine the carrier-phase ambiguities. 

• Determine the ambiguities quickly, or with limited data. 

• Provide a highly accurate navigation solution at all times. 

1.3 Scope 

This thesis covers the development and testing (both ground test and flight test) of a 

new algorithm designed to resolve carrier-phase ambiguities. Performance evaluations of 

the new algorithm are based on its ability to resolve the carrier-phase ambiguities and its 

position and velocity accuracy as compared to a nominal "truth" source. 

Software development was conducted using MATLAB® 5.3 software [23]. 

Simulated GPS measurements were used to develop and debug the software. Analysis of 

the new methodology was conducted using actual GPS signals. Ground testing consisted 

of numerous static data sets collected using Ashtech GPS Z-Surveyor receivers for both 

the remote and reference receivers. Ground test evaluations are based on Ashtech Office 

Suite Software-generated truth data [1]. Truth data includes positioning information and 

the correct carrier-phase ambiguities. Flight test data consists of numerous data sets 

collected by flying a T-38 aircraft, again using Ashtech GPS Z-Surveyor receivers [2] for 
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both the reference and remote (airborne) receivers. Flight test evaluations are again 

based on Ashtech Office Suite Software generated truth data. Flight test truth data 

includes positioning information and the correct carrier-phase ambiguities. 

Detailed information on the data sets used in this research is presented in Chapter 4. 

A description of the flight test profiles is presented in Appendix A. For more information 

on Ashtech Office Suite software, the reader is referred to reference [1]. 

1.4    Related Research 

Much of the work in this thesis is based on current research found in industry and 

academia. This research can be broken down into two main areas: Kaiman filtering and 

GPS (including various types of Differential GPS). 

1.4.1    Kaiman Filtering 

Developed in 1960 by Kaiman, a linear Kaiman filter is an optimal recursive data 

processing algorithm [24, 25]. All Kaiman filters are based on a model of the system of 

interest. The Kaiman filter uses information about the model of the system as well as the 

measurements of the system to generate optimal state estimates. The filter is optimal 

with respect to virtually any criterion, one aspect being that the filter incorporates all 

available information. The filter is recursive in that the filter does not require all previous 

data to be reprocessed every time a new measurement is received. Since the introduction 

of the linear Kaiman filter, new designs have been developed to handle nonlinear models 

and parallel filter applications [22, 25]. 
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1.4.1.1   Multiple Model Adaptive Estimation 

In 1965, Magill [22] presented what is now called a Multiple Model Adaptive 

Estimator (MMAE). An MMAE is a bank, or set, of individual Kaiman filters each based 

on a particular assumption about the system of interest. Each Kaiman filter within the 

MMAE is called an "elemental filter." Each elemental filter generates its own optimal 

estimate of the variables of interest, based not only on the system measurements, but also 

on its own assumptions (or model) of the system. The characteristics of the residual 

vector outputs of the elemental filters are used to determine which elemental filter's 

system model best matches the true system model [12]. The first practical MMAE was 

implemented in 1977 by Athens et. al. [3]. 

Optimality conditions for the MMAE, similar to those of a linear Kaiman filter, were 

proven by Chang and Athans [5], but only if the true system exactly matched the 

assumption(s) modeled by one of the elemental filters. If the modeled system does not 

exactly match the real system, research indicates the MMAE will converge to the 

elemental filter based on "closest to true" system model, in the Barum's distance-measure 

sense [4, 25]. 

The Air Force Institute of Technology (AFIT) has been a major contributor in the 

area of MMAE research. AFIT has researched and applied MMAE algorithms in various 

areas including: detection of failed sensors [10, 30], adaptive target tracking [29], 

adaptive control [39], and GPS spoofing and jamming [43]. 

In 1985, Maybeck and Suizu [28] addressed the problem of "beta dominance" [3] in a 

MMAE. Beta dominance is the tendency of the MMAE to weight an elemental filter 

incorrectly due to erroneous residual contributions. The method developed by Maybeck 

1-8 



and Suizu sets the necessary scalar coefficient to unity; see Equation (2-56). This method 

greatly improves the performance of the MMAE in certain applications. Additional work 

on the beta dominance problem known as was done by Menke [30]. 

In 1987, Maybeck and Hentz [27] reduced the number of necessary elemental filters 

by using the concept of a moving bank of filters. Instead of using a large number of 

elemental filters, a smaller number of points upon which to base elemental filters are 

moved as necessary through the appropriate parameter space. Additional moving bank 

MMAE work was done in 1998 by Vasquez [44]. Continuing the idea was the 

development of " filter spawning" in 1998 by Fisher [12]. Filter spawning involves using 

a minimal set of filters until it becomes necessary to use more filters to define the 

parameter space coverage better [12]. 

Recent work with MMAE design directly related to GPS started in 1992 with 

Vasquez [43]. The preliminary work used an MMAE structure for detection of spoofing, 

jamming or failures in the GPS system. In 1998, Vanek [42] used an MMAE structure 

for GPS signal offset detection and noise strength estimation. 

As shown above, there has been an abundance of research in the area of MMAE 

design and application, but an MMAE structure has never been used to resolve carrier- 

phase ambiguities. This thesis uses an MMAE to resolve the carrier-phase ambiguities. 

1.4.2    Global Positioning System 

The Global Positioning System (GPS) is a constellation of 27 radio navigation 

satellites (24 primary plus three spares). Each satellite continuously transmits a stream of 

navigation codes and ranging information providing users with data capable of producing 
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the position, velocity, and time at the user's location.   Currently, most GPS receivers 

process data from all visible satellites (up to the number of channels in the receiver).   For 

more details on GPS, the reader is referred to references [20, 34, 35]. 

1.4.2.1   Carrier-Phase Ambiguity Resolution 

Resolving the carrier-phase integer ambiguities has been an area of research for many 

years. The simplest technique is to use code measurements to determine the carrier-phase 

ambiguities directly. However, due to the large errors associated with code 

measurements, this technique is usually not adequate. Another early attempt to resolve 

the carrier-phase ambiguities was the Ambiguity Function Method [7]. The Ambiguity 

Function Method is a pure position domain search, and is computationally intensive and 

not commonly used. 

The Least Squares Ambiguity Search Technique (LSAST) was developed by Hatch 

[17] in 1990. In the LSAST method, a given number of ambiguity sets are formed based 

on the size of the ambiguity search space. Then each ambiguity set is tested by 

calculating a least-squares position estimate and residual. The integer ambiguity set with 

residuals (the difference between the true measurement and the predicted measurement) 

significantly lower than the other ambiguity sets is assumed to be the correct set. This 

method is also computationally intensive, but is more efficient than the Ambiguity 

Function Method. This method is also not commonly used. 

Other techniques use information about the ambiguities contained in a covariance 

matrix to help determine the correct ambiguity set. The Fast Ambiguity Search Filter 

(FASF) was developed by Chen and Lapachelle in 1993 [6]. The FASF method starts 

with the floating-point ambiguity estimates and covariance.   The method next assumes 
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the best known, smallest covariance, ambiguity is correct and rounds it to the closest 

integer. Then new conditional covariance and ambiguity estimates are developed for the 

other ambiguities based on the first ambiguity being "correct." The process is repeated 

until a valid ambiguity set is found or an integer ambiguity is not found within the search 

space. This results in an efficient recursive carrier-phase ambiguity resolution algorithm. 

One of the most efficient techniques is known as the Least-squares AMBiguity 

Decorrelation Adjustment method (LAMBDA) [40, 9]. The LAMBDA method consists 

of two steps. First, the ambiguities are decorrelated using a linear, volume-preserving 

integer transform known as a "Z-transform". Then a sequential conditional least-squares 

search is performed on the transformed ambiguities. The LAMBDA method was 

improved by Li and Gao [21], with the ability to construct high dimensional "Z- 

transforms." 

Some recent research has been performed in applying advanced Kaiman filtering 

techniques to the ambiguity resolution problem. Cox and Brading [8] proposed using the 

outputs of a Kaiman filter to determine the optimal integer ambiguity set and the optimal 

navigation solution. This approach considers the integer values closest to the Kaiman 

filter estimates as the "the optimal" ambiguity set and does not use MMAE techniques to 

determine the correct ambiguity set. Finally, in 2000 Williamson and Speyer [45] used 

an MMAE structure to detect carrier-phase cycle slips in an integrated GPS/INS (Inertial 

Navigation System), but not to resolve the integer ambiguities. 
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1.5    Methodology 

The research presented in this thesis begins with Kaiman filtering and MMAE 

designs and applications presented in Maybeck [27, 28], Magill [22], Vasquez [44], 

Miller [31], Vanek [42] and Fisher [12]. This produced the basic MMAE design used in 

this thesis. In addition, a detailed study was conducted on GPS, DGPS and carrier-phase 

ambiguity resolution techniques presented by Kaplan [20], Raquet [36, 37], Hatch [17], 

Chen and Lapachelle [6], and Teunissen [40]. 

A basic DGPS Kaiman filter was implemented in MATLAB® [23] using a design 

similar to the one outlined by Raquet [36]. The filter was expanded to use single or dual 

frequency data, and other measurement combinations as specified by the user. 

The development of the overall algorithm began after verifying the performance of 

the basic DGPS model. The MMAE model was designed using the basic MMAE 

structure found in Maybeck [25]. It contains up to 100 elemental filters, each based on a 

different ambiguity set. Ambiguity set generation for this thesis was developed using a 

combination of the LAMBDA method "Z-transform" and an FASF subroutine. The 

combination of these two methods is detailed in Section 2.5.3.1. 

All analysis of the new methodology was conducted using actual GPS signals. 

Ground tests were conducted with Ashtech GPS Z-Surveyor receivers for both the remote 

and reference receivers. The performance of the algorithm was analyzed based on four 

different ground test cases, with baselines varying from 250 meters to 100 kilometers. 

Ground test evaluations are based on Ashtech Office Suite Software-generated "truth" 

data, which includes positioning information and the correct carrier-phase ambiguities. 

Flight tests were conducted by flying a T-38A aircraft, also with Ashtech GPS Z- 
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Surveyor receivers for both the remote and reference receivers. The performance of the 

algorithm was analyzed based on numerous different flight test cases, with baselines 

varying from 10 nautical miles to 100 nautical miles at altitudes from 10,000 to 30,000 

feet. Flight test evaluations are based on GPS Aided INS Navigation Reference 

(GAINR) generated truth data, which includes position and velocity information, and 

Ashtech Office Suite Software truth data containing the correct carrier-phase ambiguities. 

Finally, analysis and plotting routines were built in MATLAB® for a complete tabular 

and graphical presentation that enabled comparisons of the algorithm to known truth 

sources, and for side-by-side case comparisons. 

1.6    Thesis Overview 

Chapter 2 presents the required Kaiman Filter, MMAE, and GPS theory used to 

develop the mathematical models for this research. Kaiman filter and MMAE theory are 

defined and presented as is the theory, mathematical relationships, and measurement 

types for GPS. Finally, the concepts and methods used for candidate ambiguity set 

generation, the LAMBDA and FASF methods are described. 

Chapter 3 describes the flow of the new algorithm. Detailed model and measurement 

equations are presented for the DGPS filter and the MMAE design. The method used to 

generate candidate ambiguity sets is described in detail, as are the calculations required to 

determine the correct ambiguity set. Finally, concepts necessary to understand the output 

of the overall algorithm are presented. 
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Chapter 4 presents a performance analysis of each test case in this research. Position 

accuracy analysis and ambiguity resolution analysis is presented for ground and flight 

tests. 

Chapter 5 presents a summary of this research effort. In addition, conclusions and 

recommendations for future research are presented. 

1-14 



2 Theory 

2.1 Overview 

This chapter describes the linear Kaiman filter, the Extended Kaiman Filter (EKF) 

and the Multiple Model Adaptive Estimation (MMAE) structure in more detail. In 

addition, this chapter develops theory behind GPS, Differential GPS (DGPS) and Carrier- 

Phase Differential GPS (CPDGPS). 

2.2 Kaiman Filters 

A linear Kaiman filter is an optimal recursive data processing algorithm [24, 25]. 

The filter is optimal with respect to virtually any criterion, one aspect being the filter 

incorporates all available information. The filter is recursive in that the filter computes a 

new estimate at discrete time intervals whenever a new measurement is available. It does 

not need all previous measurements to produce an optimal state estimate, as would a 

batch processing algorithm. In addition, the Kaiman filter is a data processing algorithm, 

meaning it is simply a computer program processing discrete-time measurement samples. 

Every Kaiman filter is based on a model of the system of interest. The Kaiman filter 

uses system measurements and the system model to generate optimal state estimates. The 

Kaiman filter uses all available measurements, regardless of their accuracy, to generate 

an optimal estimate of the variables of interest based on knowledge of the system 

dynamics and measurement characteristics, the statistical description of the system 

noises, measurement errors, and model uncertainties [46]. 
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The Kaiman filter can be described by two stages of operation: the propagation stage, 

and the update stage. During the propagation stage, the filter computes a prediction of 

the system states at some future time based on its own imperfect dynamics model of the 

system. During the update stage, the filter uses noise-corrupted measurements to refine 

its predicted state estimates further, generating the optimal state estimate. A complete 

derivation can be found in Stochastic Models, Estimation, and Control, Volume 1 [24]. 

2.2.1    State and Measurement Model Equations 

Following the development discussed in references [24, 25, 31], assume that the 

system dynamics can be modeled as a linear, time-invariant system. The state equation 

takes the form: 

x(0 = F(f)x(f) + B(0u(0 + G(f )w(f) (2-1) 

where 

x(t) = the n-dimensional system state vector 

F(0 = the n-by-n state dynamics matrix 

B(0 = the n-by-r control input matrix 

u(0 = the r-dimensional control input vector 

G(0 = the n-by-s noise input matrix 

w(0 = the s-dimensional dynamics driving noise vector 

The dynamics driving noise vector w(t) is assumed to be white Gaussian noise with 

mean and covariance defined by: 
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E{w(0}=0 (2-2) 

E{W(OW
T
 (t + T)}= Q(t)S(r) (2-3) 

where x has units of time. 

Next, assume the measurements can be modeled as a linear, time-invariant, discrete 

time system. The measurement equation takes the form: 

z(f,.) = H(f,)x(;,.) + v(0 (2-4) 

where 

z(t,.)   = the m-dimensional measurement vector 

H(f,.) = the m-by-n system output matrix 

y(t,-)   = the m-dimensional discrete time noise input vector 

The discrete time noise input vector y(t,) is also assumed to be white Gaussian 

noise. The mean and covariance are defined by: 

E{v(f,)}=0 (2-5) 

r , N   _/  «     fR(f,)   for r. =?,. 
4v(ov(0}=(0    to,^,; («) 

Noises w(0 and \(tt) are assumed independent. Thus: 

£{w(0vra,.)}=0 (2-7) 

for all ? and ?,. 

2.2.2   Kaiman Filter Equations 

The Kaiman filter is propagated forward from time ti.\ to t, starting from initial 

conditions x(t0) and T*(t0), or from the last update cycle state and covariance estimates. 
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The Kaiman filter is propagated forward by: 

i(t I tM) = F(t)x(t I f M) + B(0u(0 (2-8) 

Pit I f M) = ¥{t)V(t I fM) + V{t I t,_t )F
T (t) + G(t)Q(t)GT (0 (2-9) 

Before being used in the update stage of the Kaiman filter the state and covariance 

differential equations are solved by: 

x(r;) = &(tt,rM mti) + f' ®(tt, T)B(T)U(T)ST (2-10) 

P(t;) = <D(f,,fM )P(tU )<Dr (f.,* M) + f <P(tt,T)G(T)Q(T)G
T

 (r)Or (f., T)ST    (2-11) 

where <E>(?i,?i_]) is the state transition matrix from time tu to U and is calculated by 

<&(*,-, f,-_i) = O(A0 = eFA( where At = ti -t^. 

In Equations (2-10) and (2-11), the - and + superscripts indicate times immediately 

before and after measurements are incorporated, respectively. 

The Kaiman filter is updated by: 

A(0 = H(f,.)P(0Hr(?,.) + R(tt) (2-12) 

K(ti) = P(t;)RT(ti)A(tiy
l (2-13) 

r(tl)=zi-mtm;) (2-14) 

x(t:) = Kt;) + K(tt)r(ft) (2-15) 

P(t;) = P(t;) - K(r,. )H(*, )P(r:) (2-16) 

In a properly designed filter the residual vector r(tt) is zero mean with a filter- 

predicted covariance of A(f;).   The primary outputs of a Kaiman filter are the optimal 
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State estimates x(Y(
+)and their filter computed covariance P(f,+). In MMAE designs, the 

residual vector r(tt) and predicted covariance A(?;) are also useful. 

2.3    Extended Kaiman Filters 

A linear Kaiman filter is only useful when both the dynamics and measurement 

equations of a system are a linear combination of the states, known control inputs and 

noises modeled. However, the equations relating the state and measurement variables for 

most real system (including the GPS systems in this thesis) are nonlinear. To handle 

these nonlinearities, the Extended Kaiman Filter (EKF) is used. 

The concept behind an EKF is to relinearize the nonlinear model about the current 

best estimate x(^+). This relinearization about each new estimate allows the use of linear 

assumptions and equations. The EKF is a first-order approximation to an optimal 

nonlinear filter. It is implemented in a very similar manner as the linear Kaiman filter 

through a basic propagation stage and an update stage. A complete derivation of the 

EKF can be found in Stochastic Models, Estimation, and Control, Volume II [25]. 

2.3.1    State and Measurement Model Equations 

Following the development discussed in reference [25], assume that the system 

dynamics can be modeled as a nonlinear state equation, which takes the form: 

x(t) = f [x(t),u(t),t] + G(t)w(t) (2-17) 
where 

x(t) = the n-dimensional state dynamics vector 
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f [x(?)u(0,?] = the state dynamics vector, which is a linear or nonlinear function of 

the n-dimensional state vector x(0, the r-dimensional control input 

function u(0 and of continuous-time t. 

G(f) = the n-by-s noise distribution matrix 

w(f) = the s-dimensional dynamics driving noise vector 

The dynamics driving noise vector is assumed to be a white Gaussian noise process 

whose mean and covariance are defined by: 

£{w(f)}=0 (2-18) 
E\w(t)yvTlt + T)}=Q{t)S{r) (2-19) 

where rhas units of time. 

Next, assume the EKF discrete time measurements can be modeled as a nonlinear 

state equation. It takes the form: 

Z(0 = h[x(*,>,.]+v(0 (2-20) 
where 

z(t() = the m-dimensional measurement vector at time tt 

h\x(tt), ti ]= a known linear or nonlinear m-dimensional function of x(tt) and U 

\(tt)        = the m-dimensional discrete-time noise input vector 

The discrete-time noise input vector v(f,-) is also assumed to be white Gaussian 

noise. The mean and covariance are defined by: 

E{v(O}=0 (2-21) 

r /   \    rl   M      fR(0    forti =ti 
Emt,)y fr*)f=L       , (2-22) 
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2.3.2   State and Measurement Model Linearization 

Assuming Equations (2-17) and (2-20) are nonlinear, they must be linearized in order 

to produce an optimal estimate of the state vector x(t), to first order. The linearization 

technique used in reference [25] involves perturbations about a nominal state trajectory to 

produce a first order linear approximation of Equations (2-17) and (2-20) for use in an 

EKF [46]. 

Assume a nominal state trajectory x„ (•) can be generated from the initial conditions 

xn (t0) = xn0 using the following differential equation. 

(2-23) 

In   addition  to  the  nominal   state  trajectory,   assume  a  sequence  of nominal 

measurements. They can be defined by: 

*n<t,)=*f*Mh] (2-24) 

To produce the perturbation state S\(t) the nominal trajectory (2-23) is subtracted 

from the system model, Equation (2-17), to give: 

<5x(f)= [x(0-x„(0]=f[x(r)u(O,*]- f[x„(f)u(0,f]+ G('M0       (2-25) 

A Taylor series expansion of f[x(f),u(0,f] about xn(0 gives: 

f [*Wu(o,f ]=f [i, (o,u(o, t]+^[x(0:u(0'?] 

Öx 
[x(t)-xn(t)] + h.o.t.    (2-26) 

x=x„(i) 

where "h.o.t." represents the higher order terms in the expansion with powers greater than 

one. Finally, combining Equations (2-25) and (2-26), subtracting like terms and then 

reducing it to a first order approximation gives: 
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6k(t) = F[r; x„ (OMO + G('MO (2"27) 

Here,  F[r,xn(?)] is the n-by-n partial derivative matrix of f with respect to x, 

evaluated along the nominal trajectory and defined by: 

m*Am=*l*-"(f)tt] 
SK 

(2-28) 
x=x„(() 

This is an acceptable approximation to the true solution provided the deviations from the 

nominal solution are small enough that the higher order terms in the Taylor series 

approximation of Equation (2-26) are negligible. 

In a similar manner the measurement perturbation &(*,-) of the measurement vector 

z(ti) is formed by subtracting Equation (2-24) from (2-20) to yield: 

(5z(0-[z(0-z„(0]=h[x(a?,]-hk(0^]+v(0 (2-29) 

A Taylor series expansion of h[x(f,), t, ] about xn (tt) gives: 

hHt^h hkMhh ^M [x(0-x„(0]+ h-o.t.     (2-30) 

Combining Equations (2-29) and (2-30), subtracting like terms and then reducing it to a 

first order approximation gives: 

(5z(0=H[r,;x„(0W0+v(0 (2-31) 

Here, Hfo x„(f,)] is the m-by-n partial derivative matrix of h with respect to x, evaluated 

along the nominal trajectory and defined by: 

H[,;x„(,)]^ (2-32) 
X=X„(I,) 
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Again, this is an acceptable approximation to the true solution provided the deviations 

from the nominal solution are small enough that the higher order terms in the Taylor 

series approximation of Equation (2-30) are negligible. 

The system model in Equations (2-27) and (2-31) is optimal to first order due to the 

truncated Taylor Series, and has been linearized to produce error state equations. They 

can now be used to implement a linearized Kaiman filter to perform all state propagation 

and update equations. The total state estimate can be calculated by adding the nominal 

state value to the error state estimate. 

Recall that an EKF relinearizes the nonlinear model about the current best estimate 

x(?,+) and a trajectory emanating from it, as opposed to the nominal state just described. 

This effectively incorporates a new and better state trajectory into the filter model at each 

measurement time, allowing the use of linear perturbation techniques. 

2.3.3   Extended Kaiman Filter Equations 

The EKF state and covariance estimates are propagated forward from time ti.\ to U by 

integrating from the initial conditions x(t0) and P(?0), or from the last update cycle 

state and covariance estimates. The propagation equations are given by: 

x(t / f M) = f[x(t I f,_,), u(0, t] (2-33) 

P(?/rl._1) = F[r;x(f/fM)]P(f/fM) + P(f/fM)F7'[/;xa/fM)] + G(OQ(OG7'(0       (2-34) 

where the matrix F[t; x(t 11^)] is given by: 

FM(//(H)]S%(*£] 
ox 

(2-35) 
X=X((/(,_[) 
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In the above equations, the term 11 f M is the value of a given variable at time t, 

conditioned on the measurements taken through timefM. 

If not at time to, the initial conditions at the start of the propagation cycle are defined by: 

*('«-i/',-i)=*fei) (2-36) 

P(',-i"M)=Pfei) (2-37) 

After integrating Equations (2-33) and (2-34) forward to the next sample time, the 

following state and covariance values are used in the next measurement update cycle: 

x(t;)=x(ti/ti_1) (2-38) 

Pfc-)=P(',/',-i) (2-39) 

The EKF is updated by: 

K(0= P^^^r,,^:^;^-)W,-K^xfr:^ R(OF    (2-40) 

x^) = x(t:)+ K(0{z,. -h[*(h)ti} (2-41) 

p(;,+ )= p(f")- Kfc)HbifrMi") (2-42) 

where the matrix H^.; x{t 7 )J is given by: 

HM,-)],äJ 
dx 

(2-43) 
x=x(lf) 

The updated state estimate and covariance estimates are used as the new initial conditions 

for the propagation cycle of the sampling interval: 

x(ti/ti)=x{tl) (2-44) 

Pfc/^)=pijf,+ ) (2-45) 
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2.4    Multiple Model Adaptive Estimation 

There are many different types of Multiple Model Adaptive Estimators. The MMAE 

used in this research follows the development of the multiple model filter algorithm 

derived in reference [25]. A block diagram of the multiple model filter algorithm is 

shown below in Figure 2-1. 

KF based on ax ri>Ai 

KF based on a* r2 ' A2 

KF based on a K 

x K 

rK » AK 
•     •     • 

Hypothesis 
conditional probability 

computation 

P2 

+<g> 

• • i 

PK 

Figure 2-1. Multiple Model Filtering Algorithm 

An MMAE is a bank, or set, of K Kaiman filters, each designed using a different 

parameter vector (denoted ak), or model, of the system of interest. Each one of the 

individual Kaiman filters is called an elemental filter. The residual vector, rk(tt), and its 
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covariance, Ak(tt), are measures of how well the system modeled in the elemental filter 

matches the true system. Therefore, if each elemental filter is given the same 

measurements, then by monitoring the residuals it is possible to determine which 

elemental filter's model best matches the true system. 

2.4.1   Elemental Filters 

As stated above, each of the K elemental filters in the MMAE are based on a different 

parameter vector a or model of system of interest. For example, the kth filter is based on 

the parameter vector ak. The elemental filters are each propagated forward by: 

MO^MM^O + B^MM*,-,) (2-46) 

Pt(^) = *t(^,^1)Pt(Ci)**(^.^i) + G^aH)Q-t(f,-i)G^('M)     (2-47) 

The elemental filters are each updated by: 

A, (r,) = H, (r, )Pt (t; )H[ (tt) + Rk (r,) (2-48) 

Kt(^) = Ptar)Hja()At(fJ)-
1 (2-49) 

rk(ti) = zi-Hk(ti)xk(t7) (2-50) 

K(t;) = xk(t;) + Kk(ti)rk(ti) (2-51) 

P4(f,+ ) = Pt(0-Kt(OHt(OPt(*r) (2-52) 

where the subscript k refers to the kth elemental filter. 

It is important to understand that at every sample time ti, each elemental filter 

generates an optimal state estimate xJt(?,+), covariance Pt(?,+), residual vector rk(ti), and 

covariance A.k(tt)  based on its internal system model and system measurements. 
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2.4.2   Conditional Probability Generation 

The residuals of the elemental filters are evaluated by the conditional probability 

computation shown in Figure 2-1. The conditional probability of the kth elemental filter 

at time t{, is defined as: 

pt(f,.)=Prob(a = at|Z(f,.) = Z,) (2-53) 

The conditional probability is the probability that the random variable a, representing the 

system characteristics, is the realization of the variable in the kth elemental filter ak, 

given the time history of measurements up to and including that taken at time t,.. The 

time history of measurements is represented by: 

Z(ti) = [x(t1)
Tlz(t2)

Tl--:z(ti)
T]T (2-54) 

As shown in [25], the conditional probabilities can be computed as: 

,,, /z(t()|a,Z(rw)(Zia*'ZI--i)Plfc(^_i) 
Pk (fi) = -^K—! ■ ;  (2-55) 

Llj=\ fz(u )|a,Z((M) (Zi \aj' Z.--l )Pj (fi-l) 

The denominator in Equation (2-55) acts as a scaling function ensuring that the 

probability of each elemental filter is properly defined in the sense that: 

Pk (ft) > 0 for all K and ^ Pk (ft) = 1 

The conditional density function in Equation (2-55) is for the current measurement based 

on the elemental filter's parameter vector ak and the time history of measurements. This 

density function is represented and calculated by: 
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'■«»i« (z'|a''z'-')=^^f77*exp,,) 
11,1 , (2-56) 

{•} = |--rt'(ri)Aia,rrt(r/) 

where m = the number of measurements. Equation (2-56) is the conditional density 

function for the residuals of the kth elemental filter, conditioned on a* and the time history 

of measurements up to time U-i, where rk(tt) and A.k(tt) are given by Equations (2-12) 

and (2-14). If designed correctly, the elemental filter representing the true system (i.e., 

having the correct parameter vector ak) will have zero-mean white Gaussian residuals, 

with values consistently more in consonance with that filter's computed Ak(tt), than the 

residuals of other elemental filters. Therefore, based on Equations (2-55) and (2-56), the 

probability of the correct filter will increase while the probability of the other filters will 

decrease. 

2.4.2.1   Lower Probability Bounds 

The conditional probability calculation for each elemental filter is recursive in nature. 

Notice in Equation (2-55) that, if an elemental filter's conditional probability becomes 

zero, it remains zero for all time. This effect causes the MMAE to ignore information 

from that particular elemental filter. To avoid this problem, a lower probability bound e 

(generally 0.001 < e < 0.01) is set for each elemental filter. If the calculated conditional 

probability for the filter is less than the lower bound, the filter's probability is set to the 

lower bound E and then all computed pk(t{)'s are rescaled so that they sum to one. 

Large e values force inappropriate weighting of estimates associated with the wrong 
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filter, while very small e values slow down the response of the MMAE to true parameter 

or system changes. 

2.4.3 Overall MMAE State Estimate 

The output of the multiple model filtering algorithm is a probabilistically weighted 

average of the outputs of the K elemental filters. The overall state estimate of the 

MMAE is calculated by: 

The conditional covariance of the MMAE is calculated by: 

P(0 = SwAftMp*(0 + [**(0-^r)I**(0-*(^)f}      (2-58) 

It is important to understand that the output of the MMAE is a weighted blending of the 

outputs of all of the elemental filters, including filters based on the less correct 

assumptions. 

2.4.4 MMAE Convergence 

The ability of the MMAE to converge to the correct hypothesis is guaranteed 

theoretically under certain specified conditions [5]. Some of these proofs require that the 

characteristics a* modeled by an elemental filter exactly match the true system 

characteristics. Additional research has indicated that, if the modeled system does not 

exactly match the real system, the MMAE will converge to the elemental filter based on 

"closest to true" system model [25, 26, 27]. However, none of the work to date gives any 

guarantee on the convergence rate of the MMAE. 
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2.5    Global Positioning System 

The Global Positioning System (GPS) is a constellation of 27 radio navigation 

satellites (24 primary plus three spares). Each satellite continuously transmits a stream of 

navigation codes and ranging information providing users with data capable of producing 

the position, velocity, and time at the user's location. Currently, most civilian GPS 

receivers process data from all visible satellites, up to the number of channels in the 

receiver. The GPS development in this work follows the information provided in 

references [11, 20, 36, 37]. For a detailed overview of GPS, the reader is referred to 

reference [20] 

2.5.1    The GPS Signal 

The GPS signal is transmitted continuously from all satellites on two carrier 

frequencies: an LI carrier (1575.42 MHz) and an L2 carrier (1227.6 MHz). Both the LI 

and L2 frequencies are modulated with specific pseudorandom noise (PRN) codes unique 

to each satellite. The coarse/acquisition (C/A) PRN codes are 1023 bit sequences 

modulating the carrier at 1.023 MHz (repeated every millisecond). The precision (P) 

code is a much longer code that repeats every 267 days. Each GPS satellite is assigned a 

one-week segment of the P-code, which modulates the carrier at 10.23 MHz. The Y-code 

is an encrypted version of the P-code and is referred to as the P(Y)-code. The P(Y)-code 

is intended for military users and allows for the anti-spoof (AS) mode of operation. The 

LI frequency contains both C/A-code and a P(Y)-code, while the L2 frequency only 

contains P(Y)-code.  A 50 Hz navigation message is also modulated onto both carriers. 
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This navigation message contains information for all satellites such as satellite ephemeris, 

atmospheric propagation, satellite clock bias, and almanac data. Table 2-1 below 

summarizes the GPS signals [11]. 

Table 2-1. GPS Signal Summary 

Carrier Frequency Wavelength Modulation Frequency Chip Length 

LI 1575.42 MHz 19 cm 
C/A Code 1.023 MHz 293 m 
PCode 10.23MHz 29.3 m 

Nav Message 50 Hz 

L2 1227.60 MHz 24 cm 
PCode 10.23MHz 29.3 m 

Nav Message 50 Hz 

GPS receivers are called single or dual frequency receivers based on their ability to 

receive either LI signal or both LI and L2 signals. Receivers correlate the received code 

with an internally generated copy of the appropriate PRN code. Single frequency 

receivers use only C/A code while dual frequency receivers use both C/A and P codes. 

Receivers that cannot decrypt the P(Y) code signal use semi-codeless techniques to get 

range information from the encrypted signal [41]. 

At the start of this research, the GPS signal was intentionally degraded by a process 

known as selective availability (SA). Selective availability was applied to the signal 

before being transmitted from the satellite and was either a pseudo-random dither of the 

satellite GPS clock, or errors added into the ephemeris information broadcast in the 

navigation message. This denied full position accuracy to users not capable of decrypting 

the P(Y)-code. SA decreased positioning accuracy to approximately 100 meters (2-D 

RMS) with SA from approximately 10 meters (2-D RMS) without SA. In the spring of 

2000, SA was turned off and full accuracy is available to all users; however civilian users 

still only have access to C/A code signals. 
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2.5.2    GPS Measurements 

To calculate the user's position, the GPS receiver must measure the range between 

itself and each satellite in view. The GPS signal contains two main measurement types: 

code and carrier-phase. 

2.5.2.1   Code Measurements 

The GPS code measurement is called a called a pseudorange because it is a 

combination of the true range to the satellite and errors in the GPS signal. It is essentially 

the difference between the time of transmission from the satellite of the GPS signal and 

the time of reception by the GPS receiver. The pseudorange measurement is defined as: 

p = r + c(ötu-ötJ + T + I + m + v + SA (2-59) 

where 

p  = GPS pseudorange (m) 

r   = true user to satellite range (m) 

c   = speed of light (m/s) 

6tu = user (receiver) clock error (s) 

6tsv = satellite clock error (s) 

T   = errors due to tropospheric delay (m) 

/   = errors due to ionospheric delay (m) 

m = errors due to signal multipath (m) 

v   = errors due to receiver noise (m) 

SA = errors sue to selective availability (m) 
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2.5.2.2   GPS Carrier-Phase Measurements 

A GPS carrier-phase measurement is the difference between the receiver's internally 

generated carrier signal, and the carrier signal received from a satellite. The carrier-phase 

measurement (in cycles) is defined as: 

0 = —(r + c(Stu-StJ + T-I + m + v + SA) + N (2-60) 
Ä 

where 

0   = carrier-phase measurement (cycles) 

A   = carrier-phase wavelength (m) 

iV = carrier-phase integer ambiguity (cycles) 

The remaining terms  r,c,ötu,ötsv,T,I,m,v,SA  represent the same error types as in 

Equation (2-59). However, the magnitude of each specific error type in a code 

measurement will be different from the magnitude of the same error type in the carrier- 

phase measurement. In addition, the ionospheric term is the same magnitude as in the 

pseudorange, but is opposite in sign because the ionosphere delays a code measurement 

but advances a carrier-phase measurement. 

A GPS receiver cannot distinguish between one carrier cycle and the next. The 

receiver only counts the change in the number of cycles, or phase, between itself and the 

satellite. The initial number of cycles between the receiver and satellite is unknown, or 

ambiguous. To make the carrier-phase measurement a true range measurement, an 

unknown bias, N , must be added to the basic receiver measurement. The carrier-phase 

integer ambiguity, N , is essentially a constant unknown integer-valued bias between the 
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receiver and the satellite, and is different for each receiver-satellite measurement 

combination. In order to use GPS carrier-phase measurements for positioning, the 

carrier-phase integer ambiguity must be estimated or resolved. The carrier-phase 

ambiguity resolution technique used in this research is discussed in Section 2.5.3. 

2.5.2.3   Single Differencing 

In addition to basic pseudorange and carrier-phase measurements, Differential GPS 

(DGPS) techniques use measurements created by differencing combinations of receiver 

to satellite measurements. The concept of a single-difference measurement is shown in 

Figure 2-2. 

Satellite a 

Receiver x      Receiver}; 

Figure 2-2. Single Differencing 

A   single-differenced   measurement   is   created   by   differencing   simultaneous 

measurements between two receivers and one satellite. It is defined as: 

*P°„=Pa
x-pay (2-61) 
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where the superscript identifies the satellite and the subscript identifies the receiver or 

receivers. 

p° = pseudorange between satellite a and receiver x 

p" = pseudorange between satellite a and receiver y 

Substituting in the full pseudorange measurement equation, Equation (2-59) into the 

above equation yields: 

A/>; = (r;+c« - aa
xj+r; + /;+<+v; + SAD 

- (r;+c(a;u - a;j+T;+1;+m;+v;+SA;) 

Rearranging the above equation to combine like terms yields 

A^; = (rx
a-ry

a)+c(aa
xu -a;u)-c(&a

xsv -a;j+(Tx
a -r,-) 

+ (Ia
x-i;) + (ma

x-ma
y) + (va

x-va
y) + (SAa

x-SA;) 

(2-62) 

(2-63) 

Because the measurements differenced in Equation (2-63) are from the same satellite, 

the satellite clock errors and the SA errors are eliminated, (i.e. a"   -a*   =0 and '   v x sv y sv 

SAX - SA" = 0).   Removing these terms and slightly changing notation to simplify the 

expression  (allow  A to represent  a  single-difference)  the  final  single-differenced 

pseudorange equation becomes: 

Ap; = K + AC&;H + AT; + A/; + Am; + At£ (2-64) 

The single-differenced pseudorange measurement is really a measurement of the 

range between receivers x and y and residual errors. The residual user clock error 

(Ac&; ), tropospheric error (A7^), and ionospheric error (AT^) are reduced by single 
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differencing, while the multipath errors (Am^) and the receiver noise errors (Au^,) are 

slightly increased [37]. 

In a manner similar to the single-differenced pseudorange measurement, the single- 

difference carrier-phase measurement can be written as: 

again where the superscript identifies the satellite and the subscript identifies the receiver 

and 

(j)x = carrier-phase measurement between satellite a and receiver x 

(j)° = carrier-phase measurement between satellite a and receiver y 

Substituting in the full carrier-phase measurement equation, Equation (2-60), into the 

above equation yields: 

*K=\w+<**'. - *" J+T*+7" + <+v°+SA*v+K 

-{[(#■;+c(&;u -a;sv)+Ty
a+i;+ma

y+v;+sA;)]+N; 

Rearranging the equation to combine like terms yields: 

(2-66) 

AC =}[(r; -O+c« -st;u)-c{8fxsv -ä;j + (T; -r;>        ^^ rW 

+ (Ia
x -I

a
y) + K -m'y) + (va

x -v
a

y) + (SAa
x -SA;)] + (Na

x -N
a

y) 

Again, the satellite clock errors and SA errors are eliminated: 

M% =j(K+AcKu + A^+A/;+Am;+A^)+Aiv;       (2-68) 

The additional term in Equation (2-68), AN^, is the difference in the carrier-phase 

ambiguities between the two receiver's measurements, and it is still and integer value. 
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2.5.2.4  Differential Corrections 

Code based DGPS techniques use differential corrections to improve the relative 

positioning accuracy of GPS. A differential correction is formed by subtracting the 

calculated range to a satellite from the measured pseudorange: 

where 

Apa
r     = the differential correction between receiver x and satellite a 

p"       = the measured pseudorange between receiver x and satellite a 

r°        = the calculated range between receiver x and satellite a 

Differential corrections are only used when the receiver's position is known, as it is in 

a fixed reference receiver. The differential correction is then broadcast or used in post- 

processing applications to correct the pseudorange measurements of mobile receivers. 

This effectively achieves a single-difference measurement between the user's receiver 

and the reference receiver as shown below: 

p"    =r°+c(ä  -8tx ) + AT + AI + Av + Am (2-71) 

As in single-differencing, the satellite clock errors and SA errors are eliminated by the 

differential corrections. 
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2.5.2.5   Double Differencing 

The concept of double differencing is shown in Figure 2-3 and is very similar to 

single differencing. A double-difference measurement is created by differencing two 

single-differenced measurements. 

Satellite a 
Satellite b 
b 

Receiver x    Receiver y 

Figure 2-3. Double Differencing 

The double-differenced measurement is defined as: 

AVpi = AP; -Ap» =(Apz- -AP;)-(Ap* -^pb
t) (2-72) 

Substituting the full pseudorange equation, Equation (2-59), into Equation (2-72) and 

combining like terms yields: 

AVp;=(r;-r;)-(r*-r,*) 

+ c(äa
xu-a;u)-c(äb

xu-äb
yu) 

-C(äiv-a;j+c(äb
xsv-äb

yj 
+ (Tx

a-Ty
a)-(Tb-Ty

b) 

+ {iax-ry)-(ib-ib) 

+ (ma
x-ma

y)-(mb-mb) 

+ (va
x-va

y)-(vb-vb
y) 

+ (SA° - SA") - (SAb
x - SAb) 

(2-73) 
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Again, the satellite clock errors and SA errors are eliminated as well as the receiver's 

clock errors. Removing these terms and using AV to represent double differencing gives 

the final form of the pseudorange double-differencing measurement equation: 

AV/>;6 = AVr^ + AVT^ + AV/;" + AVmlJ + AV u J (2-74) 

The carrier-phase double-difference measurement is created in a similar manner 

AV^ = A^ ~ A*J = (AC - A^;) - (A# - A#) (2-75) 

Substituting the full carrier-phase measurement equation, Equation (2-60), into 

Equation (2-75) and combining like terms yields: 

^K=\lr:-ra
y)-{rb

x-rb
y) 

+ c«-*;a)-c«-<) 

-C(ä;W-ä,-J+C(ä»„-äJW) 

+ (Tx
a-Ty

a)-(Tb-Ty
b) 

+ (/;-/;)-(/*-/J) (2-76) 
+ (ma

x-ma
y)-(mb-mb) 

+ (va
x-va

y)-(vb-vb)] 

+ (SAa
x-SAa

y)-(SAh
x-SAb) 

+ (Na
x-Na

y)-(Nb-Nb) 

Removing the eliminated terms and using the double difference operator gives the 

final form of the double-differenced carrier-phase measurement as: 

AV0™ = - (AVr™ + AV7J + AV/;6 + AVm* + AVu* ) + AVA^6      (2-77) 
A 

It is important to note that the double-differenced ambiguity term AV/V^ is still an 

integer. 

2-25 



2.5.2.6   Widelane Measurements 

An additional carrier-phase measurement combination is the widelane measurement. 

A widelane measurement is a linear combination of LI and L2 phase measurements 

defined as: 

0WL   =</>Ll-<t). L2 (2-78) 

The widelane measurement has a much longer wavelength than either an LI or L2 

measurement. In addition to its long wavelength, the widelane measurement remains an 

integer quantity. The longer wavelength of widelane measurements decreases the 

number of candidate ambiguities in a given search space, making the widelane 

measurement very useful in ambiguity resolution routines. Table 2-2 below summarizes 

the different carrier-phase measurements combinations and associated ambiguity terms 

used in this research. 

Table 2-2. Phase Measurement Combinations 

Measurement Wavelength (cm) Ambiguity 
LI 19.03 AVNU (Integer) 
L2 24.42 AVNL2 (Integer) 

Widelane 86.19 AVNWL=AVNLl-AVNL2 

(Integer) 

In addition to widelane measurements, there are other phase measurement 

combinations not used in this research, but useful in other GPS applications. For more 

detail, the reader is referred to references [20, 37]. 
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2.5.3    Carrier-phase Ambiguity Resolution 

As stated earlier, in order to use GPS carrier-phase measurements for positioning, the 

integer ambiguities must be determined. There are many different algorithms used to 

determine integer ambiguities. However, most algorithms perform two primary 

operations. First, they determine the ambiguity search space by generating sets of 

ambiguities. Second, they must determine which set of those generated is the correct 

ambiguity set. 

2.5.3.1   Ambiguity Set Generation 

The ambiguity set generation routine used in this research is a combination of the 

LAMBDA method, developed by Teunissen [40] and the FASF method developed by 

Chen and Lapachelle [6]. 

Initial floating-point estimates of the carrier-phase ambiguities and their associated 

covariance matrix are generated using an EKF. However, these estimates tend to be 

highly correlated, especially for short time periods, causing problems in determining the 

correct integer ambiguity set. The basic idea behind the LAMBDA method is to 

decorrelate the highly correlated carrier-phase ambiguities by applying a decorrelating 

ambiguity transformation known as the "Z-transformation." Once the ambiguities are 

decorrelated, estimating the integer carrier-phase ambiguities can be done rapidly and 

efficiently. 

The Z-transform used in the LAMBDA method must meet certain conditions to be 

effective in the ambiguity resolution problem. First, to avoid resizing the search space, 

the Z-Transform must be volume preserving (one-to-one relation). Second, to decorrelate 
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the ambiguities, it must reduce the product of ambiguity variances. Finally, to preserve 

the integer nature of ambiguities, the Z-Transform must have integer elements.  The Z- 

Transform used in the LAMBDA method is defined by: 

z = Z x ,   z = Z x  ,  Q. =ZQ,ZT (2-79) 

where 

z, x        = transformed and untransformed ambiguities 

Z = Z-Transformation matrix 

z, x        = transformed and untransformed ambiguity estimates ambiguity estimates 

Qz >Qx   = transformed and untransformed ambiguity covariance matrices 

The Z-Transform (for a two dimensional case) is constructed by the following 

equations. Assuming 

Qx 
12 

_2 
21 

(2-80) 

then 

Zi 
1 int(-ö"12<T2

2) 
and Z2 = 

1            0 

0 1 _int(-CT2IOi-2)    1 
(2-81) 

where either the upper diagonal form Zj, or the lower diagonal form Z2, of the 

transform may be used. In the above equation, int refers to rounding to the closest integer 

value, which is necessary to preserve the integer nature of the carrier-phase ambiguities. 

Without rounding the elements to integer values, Equation (2-81) would fully decorrelate 

the ambiguities, but the ambiguities would no longer be integer values. 
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An efficient method to calculate higher order Z-transforms, used in this thesis, was 

developed by Rizos and Han [38]. The first step in the method is to perform an upper 

triangular factorization of the ambiguity estimate covariance matrix by: 

Q^U.DyUf (2-82) 

Next, the integer matrix is calculated by: 

Z^tintOJ,)]-1 (2-83) 

Then an intermediate covariance matrix is calculated by: 

Q^Z^QX, (2-84) 

The second step is to perform a lower triangular factorization of the intermediate 

covariance matrix by: 

Q     =L1DLiL^ (2-85) 

Next, the integer matrix is calculated by: 

ZLi=[int(L1)]"1 (2-86) 

Then an intermediate covariance matrix is calculated by: 

^=Z^Zl (2-87) 

This procedure is iterated until both integer matrices [in^Ui)] and [int^)] become 

identity matrices. The overall Z-transformation is obtained by: 

z = ZL4.,
Z£/l.1-

ZL!
Zy2

Zt1
Zt/1 (2-88) 

The Z-Transform calculated in (2-88) is used to transform, or decorrelate, the 

floating-point ambiguity estimates and the associated covariance matrix before 

determining the ambiguity search space.  Actual generation of candidate ambiguity sets 
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for this thesis is accomplished using the transformed ambiguities via the FASF method, 

but can be done using many of the routines described in Section 1. 

The FASF method starts by determining the search space for the best-known single 

ambiguity. The search space is determined by using a predefined multiple (k) of the 

standard deviation of the ambiguity. The search space for the ambiguity is: 

xn-kon<VAN.m<xn+kon (2-89) 

where 

xn = floating-point estimate of the n'h ambiguity 

on = standard deviation of the r\th ambiguity 

For each possible integer value in this search space, the integer ambiguity is assumed 

to be the correct value. Then new conditional covariance and ambiguity estimates are 

calculated, conditioned on the fact that the first ambiguity is known. This process shrinks 

the covariance terms of the remaining ambiguities. Next, the best-known integer value 

from the remaining ambiguities is selected, and the process repeated. The method is 

recursive and will either result in a valid ambiguity set or, if the conditional covariance 

doesn't allow for a valid integer somewhere, the process will result in an invalid set that 

will be removed from the candidate ambiguity sets. The new conditional state estimate 

and covariance are calculated by: 

x = x-pn(x„-VA/Vint)/<7„2 (2-90) 

PS=P,-(P„Pl)/^2 (2-91) 
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where 

x   = unconditioned estimated parameter vector 

x   = estimated parameter vector conditioned upon xn = VAiVint 

P_ = covariance matrix conditioned upon xn = VA/Vint 

pn = nth column of the covariance matrix P- 

(72
n = scalar variance of the n,h parameter (taken from the diagonal of Pj) 

The FASF method can be used to generate ambiguity sets in either the normal or Z- 

transformed search space. However, the candidate ambiguity sets must be transformed 

back to the original search space before being used in GPS measurements. 

2.5.3.2   Ambiguity Set Determination 

Most  carrier-phase   ambiguity  resolution   algorithms  monitor  the  measurement 

residuals for each candidate ambiguity set, by statistically comparing possible solutions, 

until the correct ambiguity set becomes evident. One method of comparing the residuals 

is by the ratio test: 

rTR~V(2ndbest) 
ratio = —-—^  (2-92) 

rrR"V(best) 

where 

r = measurement residuals 

R = measurement covariance 

The ambiguity set is determined to be the correct ambiguity if the ratio is consistently 

greater than a given value, typically 2. 
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This is a common method of determining the correct ambiguity, however it is not the 

method used in this research. The method used in this research is to base each one of the 

elemental filters in an MMAE on a different ambiguity set. The conditional probability 

of each filter being based on the correct ambiguity set is then calculated by Equation 

(2-55), with the modifications outlined in Section 3.5.2. Based on its convergence 

properties, the MMAE will converge to the correct ambiguity set, provided the correct 

ambiguity set is used in one of the elemental filters. If the correct ambiguity set is not 

available in one of the elemental filters the MMAE will converge to the elemental filter 

with the ambiguity set "closest" to the correct ambiguity set in the Barum's distance- 

measure sense [4]. 

2.6    Summary 

This chapter presented the introduction and theory of linear and Extended Kaiman 

filters, the MMAE and GPS (including carrier-phase ambiguity resolution techniques). 

Chapter 3 will provide detailed descriptions of the models and algorithm development 

investigated in this thesis. 
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3 Methodology and Algorithm Development 

3.1 Overview 

This chapter provides a complete description of the overall algorithm, system models, 

and techniques used in this thesis. First, an overall algorithm description is presented, 

followed by a description of each main subroutine. Detailed descriptions of the system 

states, models and measurements equations for the Kaiman filters used in this research 

are then presented. Finally, specific techniques are presented that are key to the 

understanding of this research, including changes made to the theory of Chapter 2. 

3.2 Overall Algorithm Structure 

The overall structure of the algorithm developed in this thesis is shown in Figure 3-1. 

The algorithm can easily be divided into three main areas: a floating-point differential 

filter, carrier-phase ambiguity set generation (Z-transform, FASF and inverse Z- 

transform), and the MMAE. Each one of these areas is fully described in the following 

sections. 
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Figure 3-1. Overall Algorithm Description 

3.3    Floating-Point Differential GPS Kaiman Filter 

The initial step in the post-processing algorithm is a floating-point DGPS Kaiman 

filter, and it follows the general development of the filter found in reference [36]. This 

filter is a DGPS navigation EKF designed to calculate the user's position, velocity, 

acceleration, and carrier-phase ambiguity estimates.   The filter uses both differentially 
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corrected code measurements and double-differenced carrier-phase measurements. The 

main purpose of this initial filter is to generate the carrier-phase ambiguity estimates and 

covariances used by the ambiguity set generation routine. However, the output of this 

filter is also used, as necessary, to initialize or reinitialize the elemental filters in the 

MMAE. 

A few aspects are critical to implementing this DGPS filter. First, it is assumed that 

the remote (or airborne) receiver has access to the same satellites as the reference 

receiver. Second, it is also assumed for modeling purposes that the differential 

corrections are all timed correctly to correspond to the correct remote receiver 

pseudorange measurement. Last, when processing DGPS measurements, it is assumed 

that the differential corrections have been applied to the raw pseudorange measurements 

from the remote receiver. 

All of the above assumptions are easily and properly invoked because the algorithm 

developed in this thesis is a post-processing algorithm. A simple data preprocessing 

routine was used to coordinate visible satellites and measurement times between the 

reference and remote receivers prior to the data being used in the floating-point DGPS 

Kaiman filter. In addition, the data preprocessing routine was used to detect cycle slips, 

determine a base satellite, and to apply tropospheric corrections to raw pseudorange 

measurements. The data preprocessing routine does not in any way affect the functioning 

of the overall algorithm. It simply organizes the available data to improve the efficiency 

of the floating-point DGPS Kaiman filter and the MMAE. 
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3.3.1   Differential GPS Model Equations 

The floating-point Differential GPS Kaiman filter is an ll+(n-l) state filter (n is the 

number of satellites in view) with a linear dynamics model. The filter's first nine states 

consist of three position, three velocity and three acceleration states, based on a First 

Order Gauss Markov Acceleration (FOGMA) model. 

The position and velocity states dynamics are defined as: 

JCi         J\.         JCA X"J        1          JCe JCfr        Z-l Jis 

To handle unknown accelerations, the acceleration states are modeled as First Order 

Gauss Markov processes. The acceleration states dynamics are defined as: 

*7=(-i/rfl)x7+wai(0 

*8 = (-i/rflk + %2(0 (3-D 
*9 = (-iA\,k+wfl(o 

The acceleration states process noises are defined as: 

£fc, ('K (t + r)}= E{va2 (t)wa2(t + T)}= E{va3 (0wfl3 (t + T)} 

a 

(3-2) 

The time constant, Ta, and the mean squared value, a2
a, are user-defined tuning values, 

set according to the expected accelerations and time correlations. 

The largest error sources in a GPS measurement are due to clock errors in the user's 

receiver. Therefore, two additional states were added to the first nine states, to represent 

the user's clock bias and clock bias drift. The clock bias state and drift state dynamics 

are defined as: 
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*io-*.+"*, (3_3) 

*11  = Wclk, 

The clock bias and drift states process noises are defined as: 

^ktt, (t)wclki (t + T)}= qclkS(T)     E{vclk2 (t)wclki (t + T)}= qdk2S(T) (3-4) 

The floating-point DGPS filter uses both single-differenced (differentially corrected) 

code measurements and double-differenced carrier-phase measurements. The double- 

differenced carrier-phase measurements may be LI, L2, or widelane measurements. 

Note, widelane measurements are used for the majority of this research. In order to use 

double-differenced carrier-phase measurements, the filter must also estimate the carrier- 

phase ambiguities. By definition, the double-difference carrier-phase integer ambiguities 

are constant biases in the carrier-phase measurements. However, due to errors in the GPS 

measurements, if these states were modeled as constant biases the filter may converge to 

the wrong values, with no way to correct the bias. A bias in the ambiguity estimates will 

result in a constant bias in the position estimate of the overall algorithm. Therefore, these 

states were modeled as random walks, and an additional n-\ states were added to the 

filter to represent the double-differenced carrier-phase ambiguities. The double- 

differenced carrier-phase ambiguity states dynamics are defined as: 

with process noises defined as: 

= •" = Eh*N- ('KAN'» (' + T)}= Q»SW 

(3-6) 
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The overall state vector for the floating-point filter is defined by: 

x=[x   Y  Z  X   Y  Z  X   Y  Z  cStclk   cStclk   VA/V12  VA/V13   ••• VA/V1"}     (3-7) 

where 

xx = X = ECEF X position (m) 

x2 = Y = ECEF Y position (m) 

x3 = Z = ECEF Z position (m) 

x4 = X = ECEF X velocity (m/s) 

JC5 = Y = ECEF Y velocity (m/s) 

x6 = Z = ECEF Z velocity (m/s) 

x7 = X = ECEF X acceleration (m/s2) 

xs - Y = ECEF Y acceleration (m/s2) 

x9 = Z = ECEF Z acceleration (m/s2) 

JC10 = cö tclk = user's (remote) and reference clock bias (m) 

xn -co idk = user's (remote) and reference clock drift (m/s) 

JC12 = VAN12 = double-difference phase ambiguity between satellites 1 and 2 (cycles) 

JC13 = VAN13 = double-difference phase ambiguity between satellites 1 and 3 (cycles) 

xn+(n-i) ~ VAN1" = double-difference phase ambiguity between satellites 1 and n (cycles) 

Because GPS measurements are in the Earth Centered Earth Fixed (ECEF) reference 

frame, all of the calculations in the floating-point filter (and the MMAE) were conducted 

in the ECEF frame. 
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The linear state-space differential equation for the floating-point filter in the form: 

x(t) =F(t)x(t) + G(t)w(t) (3-8) 

is fully represented by: 
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0 

0 

0 

0 

0 

0 

0 0 0 0 0 

0 0 0  0  0 

0 0 0 0 0 

0 0 0  0  0 

0 0 0 0  0 

1 0 0  0  0 

0 0 0 0  0 

0 0 0 0  0 

P 0 0 0  0 

0 0 1   0  0 

0 0 0 0  0 

0 0 0 0  0 

0 0 0 0  0 

0     0  0  0  0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0   0 

*l 0 

*2 0 

*l 0 

x4 0 

x5 0 

X6 0 

x, Wa 

% + Wa 

X, Wa 

-'lo Wclh 

*i WclK 

■% *W 
Xy3 WW 

_Xlb{n-l)_ 
W 

_   VAN1". 

(3-9) 

In Equation (3-9), Ta is the time constant associated with the FOGMA acceleration 

states. For this system, the matrix G(t) is an identity matrix. Although the floating-point 

filter does not model all of the possible error sources in a DGPS application, enough are 

modeled to be accurate enough for the purposes of this research. 
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The dynamics driving noise matrix Q defined by: 

£{w(0wr (t + T)}= Q(t)S(r) (3-10) 

must also be specified for the filter. The matrix Q used in this research was given by: 

0 0 0 0 0 0 0 0 0 0 0 0    •• 

0 0 0 0 0 0 0 0 0 0 0 0    •• 

0 0 0 0 0 0 0 0 0 0 0 0    •• 

0 0 0 0 0 0 0 0 0 0 0 0    •• 

0 0 0 0 0 0 0 0 0 0 0 0    •• 

0 0 0 0 0 0 0 0 0 0 0 0    •• 

0 0 0 0 0 0 la 0 0 0 0 0    •• 

0 0 0 0 0 0 0 <la 0 0 0 0    •• 

0 0 0 0 0 0 0 0 <la 0 0 0    •• 

0 0 0 0 0 0 0 0 0 Qclki 0 0    •• 

0 0 0 0 0 0 0 0 0 0 <7ctt2 
0    •• 

0 0 0 0 0 0 0 0 0 0 0 <1N    ■■ 

0000000     0     0      0 0       0     0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

4* 

(3-11) 

The floating-point filter time constant, mean squared value, and noise values used in this 

thesis, for both ground and flight test, are specified below in Table 3-1. 

Table 3-1. Floating-Point Filter Dynamics Driving Noise Values 

Term Definition Value 

°l Mean squared value (12.25 m/sec2)2 

Ta Acceleration time constant 3 sec 

% Acceleration noise 100 m2 /sec5 

Qclk, Clock bias noise 0.036 m2/sec 

*lclk2 
Clock Drift noise 0.141m2 /sec3 

IN Ambiguity noise l.lxl0~4cycles2/sec 
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The initial conditions for the position states (x1,x2,xi) and the clock bias state (x10) 

are determined using a single point GPS positioning subroutine. The double-differenced 

ambiguity states (xl2,x13---,xln) are initialized using code-carrier difference calculations, 

by the following equation: 

xln = VAN1" = VA01" - 
VAyO1" 

(3-12) 

All remaining states were initialized to zero, making the initial state vector: 

x(*0) = k    Y0    Z0   0   0   0   0   0   0   cStclko    0   VAA^2   VAAtf   -   VAAtfT     (3"13) 

The initial covariance matrix for the filter is assumed to be a diagonal matrix with 

elements shown below. All of the initial cross-covariance terms set to zero. The initial 

covariance matrix for the filter is given by: 

^ 00000000 0 
OoJOOOOOOO 
OOofOOOOOO 
OOOa^OOOOO 
OOOOoJOOOO 
OOOOOofOOO 
000000^00 

F(f0)= OOOOOOOöJO 
OOOOOOOOc^ 
000000000 ot, 
000000000 
000000000 
000000000 
000000000 
000000000 

0 0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 

0 °i 0 0 0 0 

0 0 
^VAN12 0 0 0 

0 0 0 
^/W13 0 0 

0 0 0 0 \ 0 

0 0 0 0 0 
°VA/V"' 
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The initial covariance values used in this thesis are specified below in Table 3-2. 

Table 3-2. Floating-Point Filter Initial Covariance Values 

Term Definition Value 
a2 

x
\ 'X2,x3 

Position state variance (100 m)2 

2 
x4,x5_x6 

Velocity state variance (400 m/s)2 

a2 
Xf ,X$ Xg Acceleration state variance (20m/s2)2 

■Mo 
Clock bias variance (200m/s2)2 

< Clock drift variance (1000 m/s2)2 

(J     — •■•O 
XY1                        x\n 

Ambiguity variance (—cycles)2 

A 

3.3.2   Differential GPS Measurement Model 

The floating-point DGPS Kaiman filter uses a nonlinear measurement model 

consisting of differentially corrected code measurements and double-differenced carrier- 

phase measurements resulting in a 2n-l (n is the number of satellites in view) 

measurement vector specified by: 

*(tt)=[ PL     p2
con     ftr       -      Plorr    VA#   VA^3      -     VA^f    (3-14) 

where 

Plorr= differentially corrected code measurement between the receiver and satellite 1 

p2
corr = differentially corrected code measurement between the receiver and satellite 2 

pn
cgrr = differentially corrected code measurement between the receiver and satellite n 

VA^2 = double-differenced carrier-phase measurement satellites 1 and 2 

VA^]3, = double-differenced carrier-phase measurement satellites 1 and 3 

VA0]" = double-differenced carrier-phase measurement satellites 1 and n 

To be used in an extended Kaiman filter the measurement model must be in the form: 
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z(0=h[x(f,k]+v(0 (3-15) 

From Section 2.5.2.4, differentially corrected code measurements are defined as: 

pa
ymr = ry

a + c(&y -äx) + AT + AI + Av + Am (3-16) 

By combining terms, the above equation becomes: 

where cöt = c(6ty -6tx) and vp = AT + AI + AV + Am.   In Equation (3-17), the noise 

term, v  , is modeled as a white noise.  Even though the individual residual differential 

error terms (AT ,AI ,Av ,Am) are not white noises, we assume the combination of the 

four terms can be sufficiently modeled as a white noise due to the central limit theorem. 

Expanding the range term, to incorporate satellite position and receiver position, and 

substituting state variables for the appropriate terms gives the following equation: 

P'y.m=h„-x1)
2+(y„-x^2+(z„-x3)

2],2+   xl0+   vp     (3-18) 

This measurement equation must be linearized before being used in the gain and 

covariance calculations of an EKF. The partial derivative matrix H is defined as: 

H[,,xn(,)]=*[X''<] 

SK 
(3-19) 

x=x„ ((,- ) 

3-11 



The individual partial derivatives for one row of the differentially corrected code 

measurements are: 

<5h[x,?,] 

ox. 

Sh[x, tt ] 

Xsv        Xl 

&, 

Shlxjj 

x=x(h) 

x=x(tj) 

[(xsv -x,)2 +(ysv -x2)
2+(zsv -x3)

2}' 
2   """1 (3-20) 

ysv~
x: 

[(xsv -x,)2 + (ysv -x2f +(zsv -x3)
2] 

77se2       (3-21) 

Ox, 
Zsv       X3 

<=*«->   [(*w -xi)2+(ysv -
x

2)
2+(zsv -*3)

2I 
72-^3       (3-22) 

Sh[x, tt ] 

fix. 10 

= 1 (3-23) 
x=x(tj) 

These can be combined into a vector representing one row of the H matrix as: 

H° = |efl    0   0   0   0   0   0   1   0   •••   oj (3-24) 

where 

ea - [gj    e2   e3] = unit line of sight vector between the receiver and satellite a. 

The double-differenced carrier-phase measurements are used in a similar manner. 

From Section 2.5.2.5, the double-differenced carrier-phase measurements are defined by: 

AVßJ = - (AVr^ + AVr^ + AV/£ + AVmJ + AVu;6) + AViVj      (3-25) 
A. 

The A, term in Equation (3-25), represents the wavelength of the carrier-phase 

measurement and will be different depending on the type of double-differenced carrier- 

phase measurement (LI, L2, Widelane) being used in the filter. 
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By expanding the  double-differenced range  term  and combining the residual 

differential error terms the above equation becomes: 

AV<=|[r,--r;-(r,»-r*)]+   AVAT» +   vAV, (3-26) 

In Equation (3-26), vAV(> is modeled as a white noise, and is the combination of the 

residual       error       terms       in       the       double-differenced       equation,       i.e. 

v&v„=-(AVr^+AV/J+AVinJ+AVüJ).      Again,   even  though  the  individual 
A 

residual error terms (AVr^,AV/^,AV/n^,AVu!^) are not white noises, as explained 

previously, the combination of the four terms can be sufficiently modeled as a white 

noise. By expanding the range terms and substituting state variables for the appropriate 

terms gives the following equation: 

-l(xb -x,f + (/ -x2f +(zb -x3f]n (3-27) 

The individual partial derivatives for one row of the double-differenced widelane 

carrier-phase measurements are: 
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Sh[x, tt ] _ 1 

x=xOt ) 

xa -x, 

<5K, [(xa-x1)
2+(ya-x2)

2+(za-x3)
2}'2 

1 xb-Xl (3-28) 
T [{x»-xlf+{y»-xlf+izb-x3)

2}12 

4k-d 
Sh[x, ti ] _  1 ya-*2 

Sx2 [(xa -Xl)
2 +(ya -x2)

2 +(za -x3)
2]'\ 

1 yb -x2 (3-29) 
A lx»-Xlf+{y»-X2y + {z

b-xj}
12 

- 2 ¥2     eii 

Sh[x, tt ] 1 

x=x(t, ) 

r 

za -x3 ^ 
5x3 \(xa-xl)

2+(ya-x2)
2+(za-x3)

2]'2 

1 zb-x3 (3-30) 
Ä fr-tf+tf-xj+tf-x,)2]'2 

-   -,   F3        ß3 J 

Sh[x, ti ] = 1                                         (3-31) 
x=x(tj) 

&ln 

These can be combined into a vector representing one row of the H matrix as: 

Wb = -(e"-et)   0   0   0   0   0   0   0   0   ••■   1   •••   ( 
_A   y     y )        (3-32) 

where 

e" = [gj    e2    e3] = unit line of sight vector between the receiver and satellite a. 

e* = \ex    e2    e3 ] = unit line of sight vector between the receiver and satellite b. 
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The additional "1" in the above equation is placed in the column corresponding to the 

appropriate ambiguity state. 

The entire measurement matrix H is an (1!+(«-!)) by (2n-l) matrix defined by: 

H 

e1 0000001000 

e2 0000001000 

e" 0000001000 

-(e'-e2) 0000000010 
A 
—(e'-e3) 0000000001 
A 

1 (e'-e")   0   0   0   0    0   0   0    0   0   0 

(3-33) 

The measurement error covariance matrix R defined by: 

L w     Vy/J     |0 fort±tt 
(3-34) 

must also be specified for the filter. The matrix must consider code measurement noise 

variances, phase measurement noise variances, the code measurement noise covariances, 

the phase measurement noise covariances, and the cross-covariance of code measurement 

and phase measurement noise. For this research, the code measurement noise covariance 

was assumed to be zero based on the assumption that code measurement errors are 

uncorellated between satellites, and the baseline distances are short enough to cancel the 

majority of tropospheric errors. In addition, the cross-covariance of code and phase 

measurement noises was assumed to be zero based on the assumption that double- 

differenced tropospheric errors are negligible and that phase multipath and noise errors 

are uncorrelated between measurements. Values for the other measurement error terms 

are listed in Table 3-3. The R matrix is a (2n-l)-by-(2n-l) matrix specified by: 
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R = 

V 

p',p: 0 0      • 0 0 0 0 

0 r ,■   ,• 0 0 0 0 0 

0 0 
p ,p 

•      0 0 0 0 

0 

0 0 0 
p ,p 

0 0 0 
Ü 0 0      • •      0 r 

VAf ,VA«t'J VA(*,J,VA(*" VA(»'J,VA(*'' 

Ü 0 0      • •      0 
VA(*'J,VA(J* 

r           ..    • 
VA(*'J ,VA0'J VA(*S,VA(*'' 

0 0 0      • •      0 r 
VA(*»,VA(»'' VA(*,J ,VA0* VA^'.VAdl'5 

(3-35) 

where 

r ,   , = differentially corrected code measurement variance 

VA0* ,VA<*' 

VA^'5 ,VA0* 

|/y = double-differenced carrier-phase measurement variance 

= double-differenced carrier-phase measurement covariance 

The floating-point filter measurement error values used in this research are listed below 

in Table 3-3. 

Table 3-3. Floating-Point Filter Measurement Covariance Error Values 

Term Definition Value 

Vv Differentially corrected code variance error 2.6m2 

r 
VA0" ,VAf Double-differenced carrier-phase variance error 0.004m2 

r 
VA0* ,VA(*" Double-differenced carrier-phase covariance error 0.002m2 
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3.3.3   Discrete-Time Models 

The equations derived above must be converted into difference equations in order to 

be implemented in a Kaiman filter. The filter model equations must be in the form: 

where 
£R}=o 

The state transition matrix, <ü>(Af), is calculated by: 

(3-37) 

®(tk+,tk) = ®m = e FA( (3-38) 

where At = tk+l - tk, resulting in the matrix: 

O(A0 = 

lOOAfO 0A000000 

0100 A? 0 0A00000 

0010 OAfOOAOOOO 

0001 0 0B000000 

0000 1 0 0B00000 

1     0    0    B   0    0    0   0 

0   ocoooooo 
0    C    0   0    0    0   0 

0   0   0    0     0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0     0 

0 0   oocoooo 

0 0     0001    A?   00 

0 00000100 

0 00000010 

0 0    0000001 

0000     0     0    0000000 

0 0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0    1 

(3-39) 

where 

A = T*(e~A"T° -l)+TaAt 

B = Ta(l-e-AtlT") 

C = e-*"T° 
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The discrete dynamics driving noise matrix is calculated by: 

Qd(tk) = 
kj<S>(tM,T)G(T)Q(T)GT(T)®T(tk+l,T)dT (3-40) 

resulting in the matrix: 

Qd = 

D 0 0 E 0 0 G 0 0 0 0 0 0 

0 D 0 0 E 0 0 G 0 0 0 0 0 •■• 
0 0 D 0 0 E 0 0 G 0 0 0 0 ■•• 
E 0 0 K 0 0 L 0 0 0 0 0 0 ••■ 
0 E 0 0 K 0 0 L 0 0 0 0 0 ••• 

0 0 E 0 0 K 0 0 L 0 0 0 0 ••• 

G 0 0 L 0 0 M 0 0 0 0 0 0 ••■ 
0 G 0 0 L 0 0 M 0 0 0 0 0 ••• 

0 0 G 0 0 L 0 0 M 0 0 0 0 ••• 

0 0 0 0 0 0 0 0 0 N s 0 0 ••• 

0 0 0 0 0 0 0 0 0 s T 0 0 ••• 

0 0 0 0 0 0 0 0 0 0 0 u 0 

0 0 0 0 0 0 0 0 0 0 0 0 u ••• 

0000000     0     00000 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0   u 
where 

D = \Ta\{l-e-^T°)+T:qaAt{l-2e-*/T° )-Ta\(AtJ +|r^»P 

K = \tqa 

r 
-2M/T„    ,    A   -1st IT, At 

+ 4e    ""+2 3 

M=~Taqa{e-™>T°-l) 

N = qcAt+-qC2faJ 

s=\qc2(^y 

T = qc2At 

U = qNAt 

(3-41) 
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3.4    Carrier-phase Ambiguity Set Generation 

The carrier-phase ambiguity set generation routine consists of the Z-transform, FASF 

and inverse Z-transforms subroutines. The double-differenced ambiguity states and their 

associated covariance output from the floating-point filter are used in the carrier-phase 

ambiguity set generation routine. 

The first step in generating candidate ambiguity sets is to generate the Z-transform. 

The Z-transform is the linear, volume preserving, integer transform described in Section 

2.5.3.1. The Z-transform used in this algorithm is based on the higher order 

transformations detailed in Equations (2-82) through (2-88). Once generated, the Z- 

transform is used to decorrelate the floating-point DGPS filter ambiguity estimates before 

being used in the FASF subroutine. 

These transformed estimates are then used by the FASF subroutine also described in 

Section 2.5.3.1 and Equations (2-89) through (2-91). The FASF subroutine generates a 

user-defined number of candidate ambiguity sets, picked to be 250 sets for this thesis. 

Then the routine picks the K best candidate sets (where K is the number of elemental 

filters used in the MMAE, between 15 and 100, as described in Section 3.5) by using the 

ratio test in Equation (2-92). The K candidate ambiguity sets are transformed back into 

the original measurement space using the inverse of the Z-transform before being used in 

the elemental filters of the MMAE. 

New candidate ambiguity sets are only generated and provided to the elemental filters 

in the MMAE under certain conditions: 
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□ During initialization, candidate ambiguity sets are generated after a single propagate 

and update cycle of the floating-point filter. 

Q   New candidate ambiguity sets are generated after uncorrected cycle slips in either the 

reference or remote receivers. 

□ New candidate ambiguity sets are generated when a satellite is lost from view or a 

new satellite comes into view. 

The above conditions, although simplistic and overly restrictive, were implemented to 

validate the "proof of concept" algorithm developed in this thesis. An operational system 

would have advanced logic routines capable of more efficiently handling cycle slips and 

satellites changes. 

3.5    Multiple Model Adaptive Estimator Design 

As stressed throughout this thesis, the MMAE design is the key to determining the 

correct carrier-phase ambiguity set, and the generation of accurate GPS navigation data. 

The MMAE design used in this thesis is the design described in Section 2.4, with minor 

changes to the conditional probability generation calculations. In addition, a filter 

pruning routine was added to allow the MMAE to converge to the true fixed-point 

solution. 
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3.5.1   Elemental Filter Design 

The elemental filters in the MMAE are nine-state (3 position, 3 velocity, and 3 

acceleration) FOGMA filters, described below. The additional clock or ambiguity states 

used in the floating-point filter are not necessary because the elemental filters only use 

double-difference carrier-phase measurements. All of the elemental filters are identical, 

i.e. they use the same system dynamics, the same states, the same process noises and the 

same tuning values. This means there is only one dynamics "model" in the Multiple 

Model Adaptive Estimator (MMAE). The only difference between elemental filters is 

that each filter "corrects" the double-differenced carrier-phase measurements based on a 

different double-differenced ambiguity set. At every sample time, each elemental filter 

receives (n-1) double-difference carrier-phase measurements, corrects them according to 

its own double-differenced ambiguity set. Each elemental filter then uses the "ambiguity 

corrected" double-difference carrier-phase measurements to generate state estimates and 

residuals. 

Because each elemental filter uses a fixed ambiguity set to correct the carrier-phase 

measurement, at every sample time each elemental filter generates a fixed-point solution. 

The elemental filter's state estimates and residuals are used in the conditional probability 

calculations to determine which elemental filter's solution is the true fixed-point solution. 

3.5.1.1   Elemental Filter Model Equations 

The state vector for the elemental filters are given by: 

x = [x    Y   Z    X    Y    Z    X    Y   z] (3-42) 

where 
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x, = X = ECEF X position (m) 

x2 = Y = ECEF Y position (m) 

x3 = Z = ECEF Z position (m) 

x4 = X = ECEF X velocity (m/s) 

JC5 = Y = ECEF Y velocity (m/s) 

x6 = Z = ECEF Z velocity (m/s) 

x1 - X = ECEF X acceleration (m/s2) 

jCg = Y = ECEF Y acceleration (m/s2) 

x9 = Z = ECEF Z acceleration (m/s2) 

The dynamics and process noises for the elemental filter were derived in the same 

manners as the first nine states of the floating-point filter. The linear state space 

differential equation for the elemental filters is fully represented by: 

"V 
X2 

X3 

K 
x5 = 

X6 

i7 

xs 

Xg 

0 0 0 10 0 0 0 

0 0 0 0 10 0 0 

0 0 0 0 0 1 0 0 

0 0 0 0 0 0 1 0 

0 0 0 0 0 0 0 1 

000000 0 0 

oooooo -1/7; o 

0 0 0 0 0 0 0 -l/Ta 

000000 0 0 

0 *I ' 0" 

0 x2 0 

0 x3 0 

0 *4 0 

0 *5 + 0 

1 X6 0 

0 x7 Wa 

0 x8 Wa 

vd Jig -Wa_ 

(3-43) 

Again, Ta is the time constant associated with the FOGMA acceleration states. For 

this system, the matrix G(t) is an identity matrix. The dynamics driving noise vector 

matrix Q must also be specified for the elemental filters and is given by: 
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Q = 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 9a 
0 0 

0 0 0 0 0 0 0 9a 0 

0 0 0 0 0 0 0 0 9a 

(3-44) 

The elemental filter time constant, mean squared value, and noise values used in this 

thesis, for both ground and flight test are specified below in Table 3-4. The mean 

squared value and hence the acceleration noises were increased when processing flight 

test data to account for unknown accelerations not present during the static ground tests. 

Table 3-4. Elemental Filter Dynamics Driving Noise Values 

Term Definition Ground Test Value Flight Test Value 

< Mean squared value (3.873m/sec2)2 (12.25m/sec2)2 

Ta Acceleration time constant 3 sec 3 sec 

9a Acceleration noise 10 m2/sec5 100 m2 /sec5 

At the start of the algorithm, or whenever the MMAE is reset, the elemental filters are 

initialized to the output of the floating-point filter. 

x*('o) = Wo) (3-45) 

"k%)—*a-9)jrft9)v<y (3-46) 
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3.5.1.2   Elemental Filter Measurement Model 

The elemental filters use a discrete-time, nonlinear measurement model consisting 

only of double-differenced carrier-phase measurements. Before being used by the 

elemental filters, the double-differenced carrier-phase measurements are corrected by the 

candidate ambiguity set being tested by the elemental filter. This results in an n-\ 

measurement vector specified by: 

z(f,) = (vA^2)'    (VA^3)'    -   (VA<)' (3-47) 

where 

(VA^ ) = ambiguity corrected double-differenced carrier-phase 

measurement between satellites 1 and 2 

(VA0" ) = ambiguity corrected double-differenced carrier-phase 

measurement between satellites 1 and 3 

(VA^ ) = ambiguity corrected double-differenced carrier-phase 

measurement between satellites 1 and n 

The ambiguity-corrected double-difference carrier-phase measurements are given by: 

(VA^;6)' = VA#J - VAAT* (3-48) 

where 

VA^ = the normal (or uncorrected) double-differenced carrier-phase 

measurement between satellites a and b 

VAJV^ = the double-differenced candidate ambiguity term between 

satellites a and b 

The candidate double-differenced ambiguity set (n-1 ambiguities) being tested by an 

elemental filter is made of candidate ambiguity terms, VA/V"A, one ambiguity for each of 
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the double-differenced measurements.  The candidate ambiguity terms, VAA^6, are by 

definition constant values, but are different constant values for each elemental filter. In 

fact, the difference in the candidate ambiguity sets is the only difference between the 

elemental filters. 

By substituting in the full double-differenced widelane earrier-phase measurement 

equation into Equation (3-48), the ambiguity corrected measurement becomes: 

(AV^;ft)' = - (AVrJ + AV7^ + AV7J + AVm^6 + AVv%) + AVATj - AV#J (3-49) 
Ä 

As outlined in Section 3.3.2, the measurement model must be represented in the form: 

z(0 = h[xkk]+v(0 (3-50) 

By expanding the double-differenced range term and combing terms Equation (3-49) 

becomes: 

(AV<j=i[r;-r;-(r;-rf)]   +   vAV0 (3-51) 

where now 

vAV, =i(AVr;i+AV/^+AVm^+AVO + AViV;t-AViV;6      (3-52) 

The term vÄV(l>, modeled as a white noise, is the combination of the residual error terms in 

the double-differenced equation and the difference in the ambiguity terms. As explained 

previously, even though the individual residual error terms 

(AVra*, AV7^\ AVm^", AV^) are not white noises, we assume the combination of the 

four terms can be sufficiently modeled as a white noise. 
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As  long  as  the  ambiguity terms  in  Equation  (3-52)  and  (3-49)  cancel,  i.e. 

AViV"* - AV7V°* = 0, modeling vAV. as a white noise is a good assumption. However, if 

the two ambiguity terms are not equal, a constant bias equal to the difference in the 

ambiguity terms will remain in the ambiguity corrected double-differenced carrier-phase 

measurements. The presence, or absence, of this bias, AViV^ - AVÄ^, will be apparent 

in the elemental filter's residuals.   This bias in the residuals is the key to determining 

which elemental filter contains the correct ambiguity set. 

Expanding the range terms and substituting state variables for the appropriate terms 

as described in Section (3.3.2) gives the following equation: 

Wf» =\[{xa -xtf + (ya -x2f + {za -x,?Y 
A 

-[(xi-x1)
2 + (yft-x2)

2 + (zfc-x3)
2]/2 (3-53) 

+jfe-*} AV<S 

Again, the partial derivative matrix H must be calculated. The individual partial 

derivatives for a row of the double-differenced widelane carrier-phase measurements are: 

Sh[x, t, ] 

&j x=*(0 

1_ 
A 

\_ 

'A 

[(xa-x1)
2+(ya-x2)

2+(za-x3)
2}/2 

ixb-xl)
1+{yb-x2f+{zb-x,f}" 

(3-54) 

A 
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3i[x,tt] 

öxn x=x(t, ) 

1_ 

T 
j_ 

'A 

y -x2 

[(xa-xl)
2 + (ya-x2)

2 + (za-x3)
2]n 

y -x2 

[(xb-x1)
2 + (yb-x2)

2 + (zb-x3)
2]n 

1   F2       e2j 

8h[x, ti ] 

Sx, 
X=X(t;   ) 

l(xb-Xl)
2
+(yb-x2)

2
+(zb-x3)

2]n 

(3-55) 

(3-56) 

These can be combined into a vector representing one row of the H matrix as: 

H ab \(ea
y-eb

y)   0   0   0   0   0   0 
A 

(3-57) 

where 

ea = [i?!    e2    e3]= unit line of sight vector between the receiver and satellite a. 

eb = [ex    e2   e3] = unit line of sight vector between the receiver and satellite b. 

The entire measurement matrix H is an (n-l)-by-9 matrix defined by: 

H = 

-(e'-e2)   0   0   0   0   0   0 
A 

-(e'-e3)   0   0   0   0   0   0 
A 

-(e!-e")   0   0   0   0   0   0 
A 

(3-58) 

The measurement error covariance matrix for the elemental filters defined by: 
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44K(a= [R(0   for t,=tj 

for ti ± tj 
(3-59) 

The R matrix is a (n-l)-by-(n-l) matrix specified by: 

R = 

'AI? Jt 

T T 

rt'J «i*       ',*!i <»* 

(3-60) 

where 

K,..II „..« = double-differenced carrier-phase measurement variance 
VApJ ,vä<pJ *• 

r   ,,     it = double-differenced carrier-phase measurement covariance 

The double-differenced carrier-phase measurement variances were all set to the same 

value as were the double-differenced carrier-phase measurement covariances. The 

elemental filter measurement error values used in this research, for both ground and flight 

test, are listed in Table 3-5. Due to the dynamics associated with the flight test data the 

measurement covariance error values were reduced to allow the conditional probability to 

more rapidly shift between elemental filters. 

Table 3-5. Elemental Filter Measurement Covariance Error Values 

Term Definition Ground Test Value Flight Test Value 

VAf1 ,VA<*,:/ 
Double-differenced carrier- 

phase variance error 
(0.75m)2 (0.075m)2 

VA0* ,VA0tt 
Double-differenced carrier- 

phase covariance error 
0.5*(0.75m)2 0.5* (0.075m)2 
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3.5.1.3   Discrete-Time Models 

The elemental filter model equations derived above must be converted into difference 

equations in order to be implemented easily in a Kaiman filter. Following the procedure 

described in Section 3.3.3, again assuming  At = tk+l-tk, the elemental filter state 

transition matrix is defined as: 

where 

$(Af) = 

1 0 0 At 0 0 Ae 0 

0 1 0 0 At 0 0 Ae 

0 0 1 0 0 At 0 0 

0 0 0 1 0 0 Be 0 

0 0 0 0 1 0 0 Be 
0 0 0 0 0 1 0 0 

0 0 0 0 0 0 ce 0 

0 0 0 0 0 0 0 Ce 

0 0 0 0 0 0 0 0 

Ae=T*{e-*IT° -l)+TaAt 

Be=Ta{l-e-^) 

C. 

0 

0 

Ae 

0 

0 

Be 

0 

0 

c. 

(3-61) 

--At/r, 

and the discrete dynamics driving noise matrix: 

Qa = 

De 0 0 Ee 0 0 Ge 0 0 

0 De 0 0 Ee 0 0 Ge 0 

0 0 De 0 0 Ee 0 0 0 

Ee 0 0 Ke 0 0 L£ 0 G, 
0 Ee 0 0 Ke 

0 0 Lc 0 

0 0 Ee 0 0 Ke 0 0 L£ 

Ge 0 0 L, 0 0 Me 0 0 

0 Ge 0 0 Le 0 0 Mc 0 

0 0 G„ 0 0 L„ 0 0 M 

(3-62) 
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where 

D. = \Tlqa (l - e-»"T-)+ r»(l - 2e-^ )- Ta\ (Atf + I^a (A,)3 

Ge=\T^a{l-e-^)-Ta\Ate-^ 

Ke = 2r^( 
-e 2Ar/ra + 4e A//r0 + 2  

7; 
-3 

V 1 T2„ 
.(-« 

-2A//T, + 2e -A//r„ 
-l) 

Me = -2ra««(e" 
2M/Ta -0 

3.5.2    Conditional Probability Calculations 

The conditional probability generation block shown in Figure 3-1 is based on 

Equations (2-55) and (2-56), derived in Section 2.4.2, with some slight modifications. 

Equations (2-55) and (2-56) are repeated here for clarity. 

/,a()|.,z(*M)(z.-|a*'Zf-i)P*('M) 
Pk(fi)=^K  •; ,   ■     _   ,    „   , (2-55) 

Zl j=l JM(I, )|a.Z(.M) ^ I3 j ^i-O Pj Vi-1 J 

(2^r/2|A,(r,.)|" 
A(,)|a.Z(,,._1)(

Z-K'Z.-l)- ^„,m/2|A    „,1-1/2 *e*PW 

{•} = |-|r4
ra<)At(fir

Ir4(fl)| 

(2-56) 

where 

At(//) = H4(OP4(fr)H4
T(0 + Rt(0 

r4(0 = a(-h&tt(O^i] 

3-30 



The success of the MMAE depends on the conditional probability calculations being 

able to distinguish between correct and incorrect solutions, i.e. the correct ambiguity set. 

The conditional probability calculations are very sensitive to differences in the residuals 

of the elemental filters. Any error, or noise, in the state estimates and covariances of 

each of the elemental filters increases their residual values and degrades the overall 

performance of the MMAE. Therefore, Equations (2-55) and (2-56) were modified to 

incorporate the latest measurement; i.e. P<:(?r)=>Pt(?i
+) and xk (?")=> xk (t*). Using the 

updated state estimate and covariance values, or "post-fit" residuals, instead of the 

propagated estimates means the conditional probability density function in Equation 

(2-56) is now conditioned on the time history of measurements up to and including 

measurements at time U. The post-fit residuals reduce the effect of propagation errors 

within the elemental filters on the conditional probability calculations. The propagation 

errors during static ground tests were small enough that the algorithm performed well 

without using post-fit residuals. However, during flight tests, without these post-fit 

residuals, the propagation errors caused the measurement residuals to be large enough 

that the conditional probability calculations could not determine which elemental filter 

contained the correct ambiguity set. However, careful consideration must be taken before 

modifying the residual calculations so as not to disrupt the beneficial qualities of an 

MMAE. The new equations using the post-fit residuals are shown below in Equations 

(3-63) and (3-64). 
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Pk ('}" \tiT-Z — „.    ,    , (3-63) 
2JM /i(«i )|a,z«,) (z/ Ia;>Z« )P; Ci-i) 

/z(,)|a,z(,)(^K,Z,)^ *exp{.} 
(2tf)    |At(r,.)| 

(3-64) 

where 

A4(rl) = H4ai)Pt(f,+)H/(/l) + Rt(fl) 

rt(tl) = zl-hbt(tt
+),tt] 

Recall that the elemental filters are identical, except for the candidate ambiguity set 

being evaluated. This lead to the value of |AA(f.)|~1/2 being the same for all elemental 

filters,    out    to    ten    significant    digits.    Therefore,    the    leading    coefficient, 

—, was removed from the conditional probability calculations, and the 
(2^)"/2|At(r,)| 

conditional probability calculations are only based on the expi—rf^A^,.)""1^^.) [ in 

Equation (2-56). By removing the leading coefficient, Equation (2-56) is no longer a 

proper conditional probability density, and tests showed there was no significant effect on 

the final probability weights, other than simplifying the necessary calculations. 

3.5.2.1   Lower Probability Bounds 

As discussed in Section 2.4.2.1, a conditional probability lower bound must be set to 

ensure the MMAE does not prematurely ignore information from a particular elemental 

3-32 



filter. The lower probability bound (E) for each elemental filter was set at 0.001. A 

smaller lower probability bound (e = 0.0005) yielded a sluggish response in the 

calculated probabilities due to changes in the elemental filters. A larger lower probability 

bound (E = 0.01) reduced the accuracy of the overall MMAE estimate by inappropriately 

forcing large weights to be associated with incorrect solutions. The lower probability 

bound of £ = 0.001 proved to be a good compromise between providing a quick enough 

response to changes in the MMAE and not overly weighting the MMAE estimate toward 

a wrong elemental filter. 

3.5.3   Filter Pruning 

An important aspect of the overall algorithm not depicted in Figure 3-1 is the concept 

of filter pruning. Most MMAEs are designed to look constantly for a change, or changes 

(failed sensor or actuator, etc.) in the system of interest. Because the MMAE is 

constantly looking for this change, each elemental filter must be checked at every sample 

time to determine if it represents the correct change to the system. However, in the 

integer ambiguity resolution problem, each elemental filter is used to check a constant 

bias, or ambiguity set. Because integer ambiguities are, by definition, constants once an 

ambiguity set is determined wrong, it will always be wrong. There is then no benefit to 

keeping that particular elemental filter within the MMAE. 

In addition, to generate an accurate navigation solution, the MMAE must converge to 

the true fixed-point solution, meaning the elemental filter based on the correct ambiguity 

set must absorb the entire probability weight. However, based on Equation (2-57) this 

cannot happen unless there is only one elemental filter in the MMAE.  Therefore, logic 
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was added to the algorithm to remove an elemental filter from the MMAE if the 

elemental filter's probability remained at or below the lower bound e for more than a 

predetermined number of consecutive sample periods. The number of consecutive 

sample periods was determined empirically and can be varied for specific applications. 

For ground tests, elemental filters were removed from the MMAE after 10 consecutive 

sample periods below the lower bound (at a 1Hz data rate). For flight tests, elemental 

filters were removed from the MMAE after 40 consecutive samples below the lower 

bound periods (at a 2Hz data rate). The additional time during flight test was necessary 

for the MMAE to determine the correct ambiguity set due to the larger errors caused by 

the dynamics of the flight tests. The overall MMAE state estimate is then simply an 

application of Equation (2-57) on the elemental filters still left in the algorithm. 

By adding pruning logic to the overall algorithm design, the MMAE is now similar to 

some forms of moving bank MMAE designs [26, 27]. However, instead of moving a 

constant number of elemental filters through a search space this new design changes the 

number of elemental filters used to examine the search space. 

The Bayesian method described in Equation (2-57) uses all of the remaining 

elemental filters to provide an overall state estimate. This ensures that until the pruning 

logic deletes all but the correct elemental filter, the filters based on a wrong ambiguity set 

will have some affect on the overall MMAE state estimate. Although the wrong 

elemental filters associated conditional probabilities may be small, their solutions can 

only degrade the performance of the MMAE. 

A different approach would be to use the maximum a posteriori, or MAP, design of 

the MMAE.   The MAP design uses the same conditional probability calculations as a 
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normal MMAE design. However, in the MAP design, the overall MMAE state estimate 

is the state estimate of the elemental filter that has the highest conditional probability. If 

the elemental filter with the highest probability is the correct filter then the MMAE 

estimate is not degraded by the solution of wrong elemental filters. However, this 

approach ignores the information available in the other elemental filters. In addition, if 

the filter with the highest probability is the wrong filter, as it occasionally is in this 

research as shown in Section 4, then the overall state estimate may be worse than the 

Bayesian approach. 

3.6    Summary 

This chapter discussed the overall algorithm, system models, and techniques used in 

this thesis. The floating-point DGPS Kaiman fitter and the MMAE structure are based on 

previous AFIT research. The carrier-phase ambiguity set generation routine was a 

combination of the LAMBDA and FASF methods. The floating-point DGPS Kaiman 

filter model and the elemental filter models used in the MMAE were presented and 

described in detail. In addition, changes made to the MMAE theory presented in Chapter 

2, necessary for the development of the overall algorithm, were described. Chapter 4 will 

discuss the completed results based on both ground and flight tests. 
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4 Results and Analysis 

4.1 Overview 

This chapter presents the results and analysis of the algorithm developed in this 

thesis. The first section covers four static ground tests cases, and the second section 

covers the three flight tests cases. The results presented here represent the best possible 

tuning within the scope of this research. Note that, the purpose of this research is to 

analyze the use of a MMAE structure to determine carrier-phase ambiguities and generate 

an accurate GPS navigation solution, not to design a production quality flight-worthy 

system. 

4.2 Ground Tests 

Ground tests were conducted at Wright-Patterson Air Force Base (AFB) Ohio, from 

1 October 99 to 31 October 99. Results are presented for four different cases, with 

baseline distances ranging from 250 m to 100 km. Dual frequency Ashtech Z-Surveyor 

receivers were used to collect data at both the reference and remote sites. The reference 

station was located at a surveyed site on the roof of the Air Force Institute of Technology. 

The remote site was a tripod-mounted antenna and receiver placed at various distances 

from the reference station. 
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4.2.1    Case Definitions 

Each ground test case consisted of approximately 30 minutes of data collected at a 1- 

Hz rate. The data included LI C/A pseudorange and carrier-phase measurements, and L2 

pseudorange (semi-codeless) and carrier-phase measurements. In all cases the lower 

probability bound for each elemental filter was 0.001, as justified in Section 3.5.2.1, and 

each had an equal initial probability weighting. The pruning logic was set to delete 

elemental filters if their conditional probability remained below the lower limit for more 

than 10 consecutive sample periods. The floating-point and elemental filters were tuned 

in accordance with the values specified in Chapter 3. The MMAE used between 15 and 

100 filters, and was manually picked depending on the case. More elemental filters were 

used as the expected difficultly of resolving the carrier-phase ambiguities increased, due 

to increased baseline distances. Eventually, the algorithm would automatically pick the 

number of elemental filters based on an expected level of difficulty. 

The first two ground test cases were chosen to demonstrate the ability of the MMAE 

to "instantaneously" resolve the carrier-phase ambiguities, using either widelane or LI 

carrier-phase measurements. The last two cases were chosen to demonstrate the ability of 

the MMAE to correctly resolve the carrier-phase ambiguities at medium and long 

baseline distances. Ground test case specifics are shown below in Table 4-1. 

Table 4-1. Ground Test Case Parameter Description 

Case Baseline 
Distance 

Carrier-Phase 
Measurement Type 

Elemental 
Filters 

Data 
Rate 

Length of 
Data Set 

1 250 m Widelane 15 1Hz ~ 30 Minutes 
2 250 m LI 25 1Hz ~ 30 Minutes 
3 28.1km Widelane 100 1Hz ~ 30 Minutes 
4 100.7km Widelane 100 1Hz ~ 30 Minutes 
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For the ground tests, the truth position and the true carrier-phase ambiguities were 

determined by the Ashtech Office Suite software [1]. The position errors are defined as: 

Xerror ~ Xfilter ~ Xtrue (4-1) 

where the subscript "filter" refers to either the floating-point filter or the MMAE 

solution, as appropriate, and the subscript "true" refers to the Ashtech Office Suite 

solution.   Note that xtrue is not the absolute truth but it is the solution the MMAE is 

striving to achieve, namely the fixed-integer solution. 

4.2.2   Case 1:250 m Baseline, Widelane Measurements 

Case 1 is designed to demonstrate the near instantaneous ambiguity resolution 

capability of the MMAE. The time history position performance of the floating-point 

filter and the MMAE, for the entire data run, are shown in Figure 4-1 and Figure 4-2, 

respectively. In both figures, the solid line represents the computed position error as 

described by Equation (4-1). The dashed line represents the filter-predicted standard 

deviation, not the actual standard deviation of the results. At the beginning of the data 

run, the MMAE was initialized to the floating-point filter, which had initial position 

errors between 0.2-0.7 meters. As shown in Figure 4-2, the MMAE corrected these 

errors to less than 0.1 meters in one sample period. The steps in the filter-predicted 

standard deviation within the first 100 seconds are due to the algorithm pruning bad 

elemental filters as described in Section 3.5.3. The filter-predicted standard deviations 

for the Up direction in Figure 4-2 are at approximately ±0.6m, just outside the plot limits. 
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Figure 4-1. Case 1 - Floating-Point Filter Position Errors 
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Figure 4-2. Case 1 - MMAE Position Errors 
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The time averaged mean position error and standard deviation of the floating-point 

filter solution and the MMAE solution are listed below in Table 4-2. The results are 

represented in the geodetic (East, North, Up (ENU)) reference frame. These results show 

that the MMAE solution was an order of magnitude more accurate than the floating-point 

filter solution. 

Table 4-2. Case 1 - Position Solution Error Comparison 

East Nor th Up 
Mean 

Error (m) Std (m) 
Mean 

Error (m) Std (m) 
Mean 

Error (m) Std (m) 

Floating-Point 
Filter -0.107 0.118 -0.059 0.138 -0.172 0.205 

MMAE 0.023 0.019 -0.024 0.010 0.059 0.042 

The first minute of the conditional probability time histories for two of the 15 

elemental filters are shown in Figure 4-3. In Figure 4-3, elemental filter 4 (EF 4) 

contains the correct carrier-phase ambiguity set, and elemental filter 3 (EF 3) contains an 

incorrect carrier-phase ambiguity set. After the first probability calculation, elemental 

filter 4 absorbs approximately 98% of the conditional probability, essentially 

instantaneously resolving the ambiguity. The remaining 2% of the conditional 

probability is distributed among the other 14 incorrect elemental filters. The conditional 

probability of 12 of the 14 incorrect elemental filters is small enough that the filters 

conditional probability had to be artificially set at the lower bound of 0.001. Ten seconds 

later the filter pruning logic deletes 12 of the 14 incorrect elemental filters (those whose 

probability stayed at the lower bound) and elemental filter 4 absorbs approximately 
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99.8% of the conditional probability. Within 25 seconds, the filter pruning logic deletes 

the remaining 2 incorrect elemental filters. Elemental filter 4 is the only remaining 

elemental filter in the MMAE, and because it contains the correct ambiguity set, the 

MMAE converges to the true fixed-integer solution. 
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W 
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Figure 4-3. Case 1 - Sample Elemental Filter Conditional Probability Time 
Histories, First Minute 

4.2.3    Case 2:250 m Baseline, LI Measurements 

Case 2 is identical to Case 1, except the algorithm uses LI carrier-phase 

measurements instead of widelane measurements. The wavelength of an LI cycle (-19 

cm) is approximately one-fourth the wavelength of a widelane measurement (-86 cm). 

This increases the number of candidate ambiguity sets within a given search space, 

making the correct ambiguity set harder to resolve. However, once resolved, an LI 

fixed-integer solution is more accurate than a widelane fixed-integer solution, due to 

amplification of multipath and ionospheric errors in the widelane measurements. 
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The performance of the floating-point filter and the MMAE are shown in Figure 4-4 

and Figure 4-5, respectively. Again, the solid line represents the computed position error 

and the dashed line represents the filter-predicted standard deviation. 

In this case, the floating-point filter initializes with position errors of less than 0.2 

meters, and the MMAE corrects these errors to less than 0.03 meters within one sample 

period. Note that the vertical scale in Figure 4-5 is five times smaller than in Figure 4-4. 

The floating-point filter uses the same tuning values for this case as Case 1, even 

thought different carrier-phase measurements are used. This might explain why the 

floating-point filter solutions are consistently outside of the filter predicted covariance 

bounds. For this case the floating-point filter performance is satisfactory, however, an 

operational algorithm would use separate tuning values for different measurement types. 
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Figure 4-5. Case 2 - MMAE Position Errors 

The time averaged mean position error and standard deviation of the floating-point 

filter solution and the MMAE solution (ENU frame) are shown in Table 4-3. As 

expected, the results indicate that the MMAE solution is at least an order of magnitude 

more accurate than the floating-point filter solution, and the LI solution is more accurate 

than the widelane solution shown in Case 1. 

Table 4-3. Case 2 - Position Solution Error Comparison 

East Nor th Up 
Mean 

Error (m) Std (m) 
Mean 

Error (m) 
Std (m) 

Mean 
Error (m) Std (m) 

Floating-Point 
Filter -0.142 0.088 -0.082 0.097 0.130 0.140 

MMAE 0.004 0.015 -0.002 0.004 0.011 0.008 
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The conditional probability time history, and two of the measurement residual (post- 

fit residual) time histories for elemental filters 21 and 24 are shown below in Figure 4-6 

and Figure 4-7, respectively. Only the first two minutes of the data run are shown. 
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Figure 4-6. Case 2 - Elemental Filter 21 Probability and Residual Time History 
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Both of the residuals shown in Figure 4-6 for elemental filter 21 appear almost zero- 

mean and white; characteristics of a residual in a properly designed and tuned Kaiman 

filter. However, in Figure 4-7 the first residual for elemental filter 24 appears to be 

growing more negative, while measurement residual 3 shows a small but noticeable bias. 

These small differences in residuals are enough to cause the conditional probability to 

shift rapidly toward elemental filter number 21. The straight horizontal line in the 

elemental filter 21 residual plots, approximately 25 seconds after the start of the data run, 

are due to the pruning logic, which deleted the elemental filter from the MMAE at that 

point. 

Because of the small value of its residuals, elemental filter 21 (the correct elemental 

filter) absorbs approximately 97% of the probability during the first conditional 

probability calculation. The remaining 3% is divided among the other 24 incorrect 

elemental filters. In a manner very similar to Case 1, the pruning logic starts deleting 

elemental filters with probabilities at the lower bound for 10 consecutive samples. 

Within 40 seconds, the pruning logic deletes all of the incorrect elemental filters, and the 

MMAE converges to the true fixed-integer solution. 

The results from the first two cases show that for short baselines, an MMAE almost 

instantly determines which elemental filter contains the correct carrier-phase ambiguity 

set. In addition, the MMAE solution is less erratic and at least and order of magnitude 

more accurate than the DGPS floating-point filter solution. 
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4.2.4   Case 3:28.1 km Baseline, Widelane Measurements 

Case 3 is designed to demonstrate the performance of the MMAE using a medium 

baseline distance. The performance of the floating-point filter and the MMAE are shown 

in Figure 4-8 and Figure 4-9. The floating-point filter (and hence the MMAE) initializes 

with a much larger than expected position error (~ 0.5-2.5 meters), due to residual 

differential errors not canceled in the floating-point filter. These residual differential 

errors are a problem, because they are used by the FASF routine to generate candidate 

ambiguity sets, and they decrease the ability of the MMAE to determine which elemental 

filter contains the correct ambiguity set. Consequently, the correct elemental filter is not 

instantly obvious to the MMAE in the conditional probability calculations. For the first 3 

minutes of the data run, the conditional probability shifts between an incorrect elemental 

filter and the correct elemental filter, causing the transients in the MMAE position errors 

seen in Figure 4-9. Even thought initially the MMAE heavily weights an incorrect 

elemental filter, its position solution accuracy is comparable to the floating-point filter 

solution during the initial transients. 

The other advantage of the MMAE solution is that it transitions very smoothly from a 

floating-point filter like solution to the true fixed-integer solution. There are no 

discontinuities, or jumps, in its position solution (typical in other ambiguity resolution 

routines) as it approaches the fixed-integer solution. The MMAE is reset after it lost lock 

on a satellite (at -19:01), and even thought the transients are not as large as the initial 

transients, the MMAE again transitions very rapidly and smoothly from the floating-point 

solution to the fixed-integer solution. 
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As in the previous cases, position error comparisons between floating-point filter 

solution and the MMAE solution are shown in Table 4-4. Again, as expected, the 

MMAE solution is significantly more accurate than the floating-point solution, even with 

the large transient errors averaged into the overall MMAE accuracy. The large initial 

transient errors are also the cause of the larger than expected standard deviation in the 

MMAE solution listed in Table 4-4. 

Table 4-4. Case 3 - Position Solution Error Comparison 

East Nor th Up 
Mean 

Error (m) Std (m) 
Mean 

Error (m) Std (m) 
Mean 

Error (m) Std (m) 

Floating-Point 
Filter 0.355 0.074 0.112 0.159 0.533 0.327 

MMAE 0.018 0.151 0.060 0.098 0.205 0.500 

The conditional probability time histories for the four elemental filters of interest in 

this case are shown Figure 4-10. Initially elemental filter 68 (EF 68) contains the correct 

carrier-phase ambiguity set, and elemental filter 5 (EF 5) contains an incorrect carrier- 

phase ambiguity set. At approximately 19:01 local time, the mobile receiver lost lock on 

a low elevation satellite. At this time the algorithm reset all of the elemental filters in the 

MMAE to the floating filter solution, generated new candidate ambiguity sets for each 

elemental filter, and reset the elemental filter probabilities to equal values. After being 

reset elemental filter 77 (EF 77) contains the correct ambiguity set, and elemental filter 

58 (EF 58) contains an incorrect ambiguity set. Resetting the probabilities explains the 

instant probability drop in elemental filter 68, and the probability spikes in elemental 

filters 58 and 77. 
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Note that resetting the MMAE was done for programming simplicity, and is not 

characteristic of an operational algorithm. Completely reinitializing the MMAE removes 

any information or advantage already gained by the MMAE. The performance of the 

algorithm could be improved by using the information already available in the MMAE to 

reset the elemental filter and more efficiently handle changes in the satellite constellation. 
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Figure 4-10. Case 3 - Sample Elemental Filter Conditional Probability Time 
Histories 

The first six minutes of conditional probability time history, and four representative 

measurement residual time histories for elemental filters 5 and 68 are shown in Figure 

4-11 and Figure 4-12, respectively. As shown in Figure 4-10 and Figure 4-11, the 

MMAE initially shifts the probability weight to elemental filter 5. Even though two of 

the four measurement residuals (residuals 2 and 3) are relatively large, the other two 

residuals are small enough to cause this initial probability shift toward elemental filter 5. 

However, the 2nd and 3rd residuals in elemental filter 5 are slowly increasing in 
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magnitude. This increase causes the conditional probability to shift away from elemental 

filter 5. Eventually, the elemental filter 5 residuals are consistently large, which reduces 

the probability to near zero and causes the pruning logic to remove the filter from the 

MMAE. Because the elemental filter 68 residuals are much closer to zero mean and 

white, the MMAE quickly starts to weight elemental filter 68 (which contains the correct 

ambiguity set). In approximately 3.5 minutes, the pruning logic deletes the incorrect 

elemental filters and the MMAE converges to the correct filter and the true fixed-integer 

solution. 
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4.2.5   Case 4:100 km Baseline, Widelane Measurements 

The purpose of Case 4 is to demonstrate the ability of the MMAE to determine the 

correct ambiguity set under the more difficult conditions associated with long a baseline 

distance. The baseline distance was increased to -100 km to increase the affect of the 

residual differential errors in the ambiguity set generation routine and the conditional 

probability calculations. 

The initialization errors from the floating-point filter for this case were large like 

Case 3, and had a major effect on the candidate ambiguity sets generated by the FASF 

subroutine. In fact, none of the 100 candidate ambiguity sets initially generated by the 

FASF routine were the correct ambiguity set. This meant the MMAE could not converge 

to the correct solution, as the correct solution was not in one of the elemental filters. 

Similar to Case 3, the transients in the MMAE position solution in Figure 4-14 are 

due to the initial high weighting of an incorrect elemental filter (elemental filter 3 as 

shown in Figure 4-15). However, elemental filter 3 does not contain the correct 

ambiguity set, and the MMAE quickly shifts the probability weight to elemental filter 62. 

The MMAE converges to elemental filter 62 in approximately 6 minutes, even though 

elemental filter 62 does not contain the correct ambiguity set. Recall that none of the 

elemental filters contain the correct ambiguity set. 

The MMAE is reset at approximately 22:06:30 local time when the remote receiver 

losses lock on a low elevation satellite. At this time, the correct ambiguity set is in one of 

the 100 elemental filters (filter 67) and the MMAE converges to this filter and the correct 

solution within 90 seconds of being reset. 

4-17 



1.5 
-=     1 

co p as  t 
LU  <B 

CO 
O 
D- 

0.5 

0 
■0.5 

\^X^^v_T^ 

I                I               I               I               I               I               I            . I                I 

-1.5 
355600 
21:47 

355780 
21:50 

355960 
21:53 

356140 
21:56 

356320 
21:59 

356500 
22:02 

356680 
22:05 

356860 
22:08 

357040 
22:11 

357220 
22:14 

357400 
22:17 

GPS Time (sec) 
Local Time (hh:mm) 

Figure 4-13. Case 4 - Floating-Point Filter Position Errors 

1.5 

1 

* 0.5- 

LU 
-0.5 

-1 

-1.5 

1.5 

 1—\ 1 t 1 1 + < 1 ^  

 _Sw-=r=r<r j<TtT7 j. —i— _i i. l/^T-1 1 1  

 i j i i x ^_ i 1 L  

l i i l i      \ l i l 

•^ CO 
o 
0. 

0.5 

0 

-0.5 

-1 

-1.5 

Ns.       ! i i i     \ 1                     1 

V        J i ■ 1        -k    _J ^     \                                   '                                           ' 

^r— i —,—t—^ 
v \    Satellite lost from view 
^4         i  MMAE reset 

/l                       I                      I 
i           i 
i           i 

355600 
21:47 

355780 
21:50 

355960 
21:53 

356140 
21:56 

356320 
21:59 

356500 
22:02 

356680 
22:05 

356860 
22:08 

357040 
22:11 

357220 
22:14 

357400 
22:17 

GPS Time (sec) 
Local Time (hh:mm) 

Figure 4-14. Case 4 - MMAE Position Errors 

4-18 



•Q   1 o    ' 
co c£ 
U- -0O.5 
LU   C 

O 
O     Q[ 

I 
: i i 

i 

 + - 
i i 

i 

i i i 

i 

i 1 

Bestellter ayajfebje (butrjqt correct) - 

-Correcjt filter 1- 

355600   355780   355960   356140   356320   356500   356680   356860   357040   357220   357400 
21:47      21:50      21:53      21:56      21:59      22:02      22:05      22:08      22:11       22:14      22:17 

GPS Time (sec) 
Local Time (hh:mm) 

Figure 4-15. Case 4 - Sample Elemental Filter Conditional Probability Time 
Histories 

The true ambiguities and the ambiguities used by the elemental filters are shown 

below in Table 4-5. Elemental filter 3 contains three incorrect ambiguities (each one 

cycle off the correct value), while elemental filter 62 only contains one incorrect 

ambiguity. Although it contains an incorrect ambiguity set, elemental filter 62 was the 

best ambiguity set available, among the 100 elemental filters (remember, the correct 

ambiguity set was not included in the 100 elemental filters). The ambiguity set in 

elemental filter 62 is considered the best set, as it is the ambiguity set closest to the true 

ambiguity set. The other elemental filters contain ambiguity sets with more than one 

incorrect ambiguity or an ambiguity set with one incorrect ambiguity more than one cycle 

off the correct value. The difference between the ambiguity set in an elemental filter and 

the true ambiguity set determines the size of the measurement bias in the ambiguity 

corrected double-differenced carrier-phase measurements described in Section 3.5.1.2. In 

general, the larger the difference between the two ambiguity sets, the larger the error in 
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the computed position solution. The underlined and italicized entries are the incorrect 

ambiguity values, and the N/A for elemental filter 67 is due to a satellite being lost from 

view, and therefore that measurement (and associated ambiguity term) being lost. 

Table 4-5. Case 4 - True Ambiguities vs. Elemental Filter Ambiguities 

True 
Ambiguity 

1094483 2268285 3812363 4213446 4210673 3709768 7338024 

EF#3 1094483 2268286 3812363 4213446 4210672 3709768 7338023 
EF#62 1094483 2268285 3812363 4213446 4210673 3709768 7338023 
EF#67 1094483 2268285 3812363 4213446 4210673 3709768 N/A 

The time averaged mean error and standard deviations of the floating filter compared 

to those of the MMAE design are shown in Table 4-6. Again, the MMAE performance 

produced much better results than the floating-point filter, even though the MMAE could 

not initially converge to the true fixed-integer solution. 

Table 4-6. Case 4 - Position Solution Error Comparison 

East North Up 
Mean 

Error (m) 
Std (m) Mean 

Error (m) Std (m) 
Mean 

Error (m) Std (m) 

Floating-Point 
Filter 0.167 0.223 -0.545 0.400 0.437 0.192 

MMAE 0.014 0.207 -0.055 0.167 0.253 0.121 

This case clearly demonstrates some of the strengths of using an MMAE to resolve 

carrier-phase ambiguities and in the process generate a navigation position solution. 

Figure 4-14 clearly shows the MMAE solution transitioning very smoothly from a 

floating-point filter like solution to a fixed-integer solution. Even though the true fixed- 

integer solution is not reached (it is not initially available) the MMAE transitions to the 
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best solution available. Also notice, that the MMAE fixed-integer solution is more 

accurate and more stable than the floating-point solution even though it is using and 

incorrect ambiguity set. After the MMAE is reset, due to the loss of a satellite from view, 

the correct ambiguity set is available and the MMAE again transitions very quickly and 

smoothly to the true fixed-integer solution. 

None of the initial candidate ambiguity sets generated by the algorithm contain the 

correct ambiguity set. As described in Section 3.4 the initial candidate ambiguity sets are 

generated after only one cycle of the floating-point filter. After one cycle the floating- 

point filter may not have an accurate estimate of the carrier-phase ambiguities. However, 

after the MMAE is reset the correct ambiguity set was generated by the Z-transform and 

FASF subroutines. By this time the floating-point filter has a more accurate estimate of 

the carrier-phase ambiguities, which increases the probability of the correct ambiguity set 

being included in one of the elemental filters. Allowing the floating-point filter a few 

propagate and update cycles before using its ambiguity estimates to generate the 

candidate ambiguity sets may improve the performance of the carrier-phase ambiguity set 

generation routine and the overall algorithm. 
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4.3    Flight Tests 

Flight tests were conducted at Edwards AFB CA, from 5 October 2000 to 17 October 

2000. Appendix A describes the complete series of flight tests. Out of the twelve flight 

conditions outlined in Appendix A, results are presented for three different cases. Due to 

flight limitations, data was only collected for the primary data points described in 

Appendix A. 

The reference receiver station was a dual frequency Ashtech Z-Surveyor receiver 

located at a surveyed site at the Air Force Flight Test Center (AFFTC) Range Division, 

Edwards AFB, CA. Data presented in this section is represented in a geodetic (East, 

North, Up (ENU)) reference frame with the origin located at the reference receiver 

location. The coordinates of the reference receiver station are listed in Appendix A. The 

test aircraft was a T-38A aircraft, modified to carrier an Ashtech Z-surveyor receiver in 

the rear cockpit. 

4.3.1    Case Definitions 

Each flight test case consisted of 4 to 20 minutes of data collected at a 2 Hz rate as 

outlined in Appendix A. For each case, the test aircraft was flown in an arc at a constant 

speed, distance and altitude from the reference receiver. LI C/A - code pseudorange and 

carrier-phase measurements and L2 pseudorange (semi-codeless) and carrier-phase 

measurements were collected by both the reference receiver and the receiver onboard the 

test aircraft. The reference receiver was at an altitude of -690 m while the aircraft was 

flown at an altitude of at least 3,400 m. In all cases, the lower probability bound for each 

elemental filter was set at 0.001 and each had an equal initial probability weighting. The 
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pruning logic in the algorithm was set to delete elemental filters if their conditional 

probability remained below the lower limit for more than 40 consecutive sample periods 

(20 seconds). The pruning time was increased to allow the MMAE more time to 

determine which elemental filter contained the correct ambiguity set, and was necessary 

due to the additional errors added by the aircraft dynamics, not present during the ground 

tests. The floating-point filter and the elemental filters were tuned in accordance with the 

values specified in Chapter 3. For all flight test cases, the MMAE within the algorithm 

used 50 elemental filters. The number of elemental filters was chosen based on the 

expected difficultly of resolving the carrier-phase ambiguities. However, as discussed in 

the next section, the carrier-phase ambiguity set generation subroutine did not perform 

well under flight test conditions. 

The first flight test case was chosen to demonstrate the performance of the MMAE 

using a nominal flight test profile. The second case uses the same flight profile but 

demonstrates the problems associated with removing elemental filters from an MMAE. 

The last case was chosen to demonstrate the ability of the MMAE to correctly resolve the 

carrier-phase ambiguities at an increased baseline distance. The flight test case specifics 

are shown below in Table 4-7. 

Table 4-7. Flight Test Case Parameter Description 

Case Baseline 
Distance 

Pressure 
Altitude 

Carrier-Phase 
Measurement 

Type 

Elemental 
Filters 

Data 
Rate 

Length of 
Data Set 

1 
16.1km 

(10 naut. mi) 
3,400 m 

(10,000 ft) 
Widelane 50 2Hz ~ 4 minutes 

2 
16.1km 

(10 naut. mi) 
3,400 m 

(10,000 ft) 
Widelane 50 2Hz ~ 4 minutes 

3 
32.2 km 

(20 naut. mi) 
3,400 m 

(10,000 ft) 
Widelane 50 2Hz ~ 6 minutes 

4-23 



For the flight tests, the true carrier-phase ambiguities were determined by the Ashtech 

Office Suite software [1]. The truth position was then calculated using a fixed-integer 

carrier-phase DGPS routine, using the true ambiguities determined by Ashtech Office 

Suite software. For all flight test cases, the position errors are defined as: 

Xerror  ~ X filter ~ Xtrue (4-2) 

where the subscript "filter" refers to either the floating-point filter or the MMAE 

solution, and the subscript "true" refers to the fixed-integer calculated truth position. 

The "truth" position generated by using the correct carrier-phase ambiguities and a fixed- 

integer carrier-phase DGPS routine is not an absolute truth position solution, but it is the 

solution the MMAE is striving to achieve. 

The position errors described above are only used to generate the position error plots 

in the following sections. They are not used to calculate time averaged mean errors and 

standard deviations. Because of the way the "truth" is generated for the flight tests, once 

the MMAE converges to the fixed-integer solution the two solutions ("truth" and 

MMAE), are virtually identical, and it is impossible to determine if the errors are due to 

the MMAE solution or the truth solution. In addition, the small amount of data used in 

each flight test case, along with the initial transients of the MMAE solution, limits the 

usefulness of a time averaged mean error. Therefore, no time averaged mean error or 

standard deviations are presented for the flight test cases. 
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4.3.1.1   Ambiguity Set Generation 

For the flight test cases analyzed, none of the 50 candidate ambiguity sets initially 

generated by the carrier-phase ambiguity set generation routine (Z-transform, FASF and 

inverse Z-transforms sub-routines) were the correct ambiguity set. This meant the 

MMAE could not converge to the correct solution, as the correct solution was not in one 

of the elemental filters. Although not changed for this research, allowing the floating- 

point filter a few propagate and update cycles before using its ambiguity estimates to 

generate the candidate ambiguity sets may improve the performance of the carrier-phase 

ambiguity set generation routine. 

The main emphasis of this research is to investigate the ability of an MMAE to 

distinguish the correct ambiguity set; therefore, the correct ambiguity set was artificially 

placed in the first elemental filter. In addition, an ambiguity set with one incorrect 

ambiguity (one cycle off the correct ambiguity) was artificially placed in the second 

elemental filter. 

Placing these ambiguity sets in the elemental filters allowed the performance of the 

MMAE to be analyzed in two ways. First, the ability of the MMAE to determine which 

ambiguity set is correct could be analyzed. Second, the ability of the MMAE to 

distinguish between closely related solutions could also be determined. 

The above modification was implemented to validate the "proof of concept" 

algorithm developed in this thesis. An operational system would require advanced 

routines to increase the probability that the correct ambiguity set is in one of the 

elemental filters. 
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4.3.2   Case 5: 16.1 km Baseline, 10,000 ft Altitude, Widelane Measurements 

The purpose of this flight test case is to demonstrate the performance of the MMAE 

using a nominal flight test profile. The time history position performance of the floating- 

point filter and the MMAE, for the entire data run, are shown in Figure 4-16 and Figure 

4-17 respectively. The errors are represented in a geodetic ENU reference frame with the 

origin at the reference receiver location. In both figures, the solid line represents the 

computed position error as described in Equation (4-2). The dashed line represents the 

filter-predicted standard deviation, and not the actual standard deviation of the errors. 

As discussed in Section 4.3.1.1, the correct ambiguity set was not generated by the 

FASF subroutine, so the correct ambiguity set was artificially placed in elemental filter 1. 

The conditional probability time histories for elemental filters 1, 2, 14, and 41 are shown 

in Figure 4-18. The conditional probability shifts back and forth between elemental 

filters 14 and 41 for the first 45 seconds of the data run. At approximately 45 seconds, 

elemental filter 1 rapidly absorbs the conditional probability and within 75 seconds, the 

pruning logic deleted all of the other elemental filters. The probability shifts between 

elemental filters is the reason for the large errors initially present in the MMAE position 

solution. However, once the MMAE converges to the correct elemental filter, the 

position solution is very stable and within a few centimeters of the true position solution. 

The large "spike" in the floating-point filter solution at 8:07:00 is due to a bad 

pseudorange measurement. Because the MMAE only uses carrier phase measurements, 

the bad pseudorange measurement only affected the floating-point filter solution. 

4-26 



~ - 1 - 
to p 

LU LU 
0)- 
O 
Q. 

E 

% ° 
g-i 
Q- 

VI                   I                   I                   I I                   I                    I 

' \           !                ;—-J-J_^3^= I                                 I                                  I                                 I 

_V^ *-            '  ! — 

f                   I                             I                             I i                  i                  i 

e 
r 1 

Q-S 

8-1 

403500 
08:05:00 

X           \              \              \ I                               I                               I 
i                               i                               i 

~~^—~*            —-—"^   I                                  ■■ "J .                                 I 

""—-I  __l             , 

I                             I                             I 
 _l ■"■"       j"                                I 

/     !       i       :       ; ■p-]-"""":     i 
403530 
08:05:30 

403560 
08:06:00 

403590 
08:06:30 

403620 
08:07:00 

403650 
08:07:30 

403680 
08:08:00 

GPS Time (sec) 
Local Time (hh:mm:ss) 

Figure 4-16. Case 5 - Floating-Point Filter Position Errors 
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Figure 4-18. Case 5 - Sample Elemental Filter Conditional Probability Time 
Histories 

The true ambiguities and the ambiguities used by the elemental filters are shown in 

Table 4-8. The underlined and italicized values represent incorrect ambiguity values. 

Elemental filter 1 contains the correct ambiguity set, while elemental filter 2 contains 

only one incorrect ambiguity. Elemental filter 14, which twice manages to absorb over 

95% of the conditional probably, contains only one correct ambiguity. Elemental filter 

14 even contains one ambiguity 17 cycles off the correct value. Finally, elemental filter 

41 does not contain any correct ambiguities. The ambiguity sets contained in the 

elemental filter are much further off of the true ambiguity set than expected. This causes 

the initial transients to have much larger errors than in the ground test cases. The 

ambiguity sets are a direct result of allowing the floating-point filter only one propagate 

and update cycle before its estimates are used to generate candidate ambiguity sets. 
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Table 4-8. Case 5 - True Ambiguities vs. Elemental Filter Ambiguities 

True 
Ambiguity 

-2320781 -1205221 210188 1885413 12121638 5587938 

EF#1 -2320781 -1205221 210188 1885413 12121638 5587938 
EF#2 -2320781 -1205221 210188 1885413 12121639 5587938 
EF#14 -2320798 -1205218 210188 1885417 12121629 5587916 
EF#41 -2320792 -1205219 210191 1885425 12121636 5587925 

The conditional probability time histories and three of the measurement residual time 

histories for elemental filters 1 and 14 are shown in Figure 4-19 and Figure 4-20, 

respectively. 
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Figure 4-19. Case 5 - Elemental Filter 1 Probability and Residual Time History 
(Correct Ambiguities) 
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Figure 4-20. Case 5 - Elemental Filter 14 Probability and Residual Time History 
(Incorrect Ambiguities) 

For the first 10 to 15 seconds of the data run, none of the elemental filter residuals are 

small enough for the conditional probability calculations to determine which elemental 

filter contains the correct ambiguity set. Then the value of the 2nd and 4th residuals in 

elemental filter 14 become very small, even though it contains an ambiguity set with 

ambiguities far from the correct values. In fact, the elemental filter 14 residuals are 

smaller than the same residuals in elemental filter 1, demonstrating how residual DGPS 

errors can make it difficult to distinguish the true ambiguity set. After approximately 45 

seconds, the first residual in elemental filter 14 starts to increase in value. It is this 

increase (along with an increase in the residuals not shown) that causes the conditional 

probability weight to shift away from elemental filter 14 and toward elemental filter 1. 

4-30 



Although elemental filter 2 contained only one incorrect ambiguity, its residuals (not 

shown) were initially larger than the residuals of elemental filter 1,14 or 41. The pruning 

logic quickly deleted elemental filter 2 from the MMAE, because its probability was 

below the lower bound for the first 20 seconds. 

Although the MMAE transitions smoothly to the true fixed-integer solution it 

emphasizes the affect of a poorly performing candidate ambiguity set generation routine 

on the overall performance of the algorithm. The candidate ambiguity generation routine 

did not generate ambiguity sets close to the true ambiguity set, and for demonstration 

purposes the correct set was artificially placed in the MMAE. Because the incorrect 

candidate ambiguity sets are so far from the correct values, they cause much larger errors 

and more rapid position shifts in the overall solution than would incorrect ambiguity sets 

closer to the true ambiguity set. This case also emphasizes the problem of rapidly 

shifting the probability to an elemental filter whose probabilities look "good" for a short 

period of time. Tuning the MMAE to slow down the conditional probability shifts, or 

adding additional tests on the elemental filter residuals, such as a whiteness test [15, 25], 

may also improve the overall performance of the algorithm. 
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4.3.3   Case 6: 16.1 km Baseline, 10,000 ft Altitude, Widelane Measurements 

Case 6 is a separate data ran, but it is the same flight profile as Case 5. This case, 

although not specifically designed too, demonstrates the problems associated with 

removing elemental filters from and MMAE. The time history position performance of 

the floating-point filter and the MMAE, for the entire data ran, are shown in Figure 4-21 

and Figure 4-22, respectively. In both figures, the solid line represents the computed 

position error and the dashed line represents the filter predicted standard deviation. 
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Figure 4-21. Case 6 - Floating-Point Filter Position Errors 
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Figure 4-22. Case 6 - MMAE Position Errors 

As seen in the previous cases, the initial transients in the solution are due to the 

MMAE shifting the probability weight to an incorrect elemental filter. However, unlike 

previous cases, the MMAE converges to a solution with a significant bias from the true 

solution. This large bias in the position solution of the MMAE is because the MMAE 

converged to the wrong elemental filter, even thought the correct ambiguity set is 

available in elemental filter 1. 

The conditional probability time histories for elemental filters 1, 2, 34, 38 and 45 are 

shown in Figure 4-23. The conditional probability calculations never shift the probability 

weight toward elemental filter 1. Elemental filter 1 is deleted from the MMAE 23 

seconds from the start of the data run. Because the correct ambiguity set is no longer 

available, the MMAE can never converge to the correct fixed-integer solution.   The 
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conditional probability shifts between elemental filters 45 and 34 before being 

completely shifted to elemental filter 38. The MMAE converges to elemental filter 38, 

and the wrong solution, 53 seconds after the start of the data run. 
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Figure 4-23. Case 6 - Conditional Probability Time Histories 

The true ambiguities and the ambiguities used by the elemental filters are shown in 

Table 4-9. Elemental filter 1 contains the correct ambiguity set, while elemental filter 38, 

the filter the MMAE converges to, has four incorrect ambiguities, one ten cycles off the 

correct value. 
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Table 4-9. Case 6 - True Ambiguities vs. Elemental Filter Ambiguities 

True 
Ambiguity 

-2320781 -1205221 210188 -3181105 12121638 5587938 

EF#1 -2320781 -1205221 210188 -3181105 12121638 5587938 
EF#2 -2320781 -1205221 210188 -3181105 12121639 5587938 
EF#34 -2320780 -1205228 210193 -3181092 12121635 5587947 
EF#38 -2320786 -1205221 210191 -3181095 12121638 5587932 
EF#45 -2320793 -1205234 210191 -3181109 12121614 5587943 

The probability time history and three of the measurement residual time histories for 

elemental filters 1, 38 and 45 are shown below in Figure 4-24, Figure 4-25, and Figure 

4-26 respectively. As shown in Figure 4-26, the elemental filter 45 measurement 

residuals at the start of the data run, are small enough that the MMAE shifts the 

conditional probability to elemental filter 45. However, this shift is only for a few 

seconds, because the residuals rapidly increase in value, causing the MMAE to shift the 

probability to elemental filter 34. 

The elemental filter 1 measurement residuals are large enough at the beginning of the 

data run to shift the conditional probability away from the filter. Measurement residual 3 

in Figure 4-24 is actually getting larger at the start of the data run. In contrast, two of the 

elemental filter 38 residuals (residuals 2 and 4) are very close to zero. Approximately 20 

seconds after the start of the data run all six (even the three not shown) of the elemental 

filter 38 residuals are very close to zero. This causes the rapid shift in probability toward 

the filter. None of the other elemental filter's residuals are small enough to cause the 

MMAE to shift the probability away from elemental filter 38. The pruning logic 

eventually deletes the other elemental filters and the MMAE is forced to converge to 

elemental filter 38. 

4-35 



■8   ' 
D_ 

-~ "DO.5 

I                                                          I                                                         I                                                          I                                                        I                                                          ' 

CM    0.1 
I                      i                      '                      !                      !                      ! 

-     

3    0 
co 
CD 

DC -0.1 

1—'  ^1                      1                      1                      1                      1                      1 

V          j_         1              1             _]          [_         , 
\              1              1               1              1               1 

co   0.1 
CO 

s    0 

i\             1              1               1              |               | 

|^ JElementa L filter piuned-here           '                  '                  ' 

CD 
DC   -0.1 ^^y--f                 T                 !                  !                  !                  ! 
^   0.1 
CO 

/ 1 1                  1                  1                  j 

» 1 

3    0 
'in 

DC  -0.1 

- ^J      1 

1 

1                  1                  1                  1                  1      1  

404530   404560   404590   404620   404650   404680 
08:22:10  08:22:40  08:23:10  08:23:40  08:24:10  08:24:40 

GPS Time (sec) 
Local Time (hh:mm:ss) 

404710 
08:25:10 

404740 
08:25:40 

Figure 4-24. Case 6 - Elemental Filter 1 Probability and Residual Time Histories 
(Correct Ambiguities) 

co   0.1 
CO 

■i    0 
CO 
CD 

DC -0.1 

^   0.1 
CO 

■i    0 
CO 
CD 

DC -0.1 

404530   404560   404590   404620   404650   404680 
08:22:10  08:22:40  08:23:10  08:23:40  08:24:10  08:24:40 

GPS Time (sec) 
Local Time (hh:mm:ss) 

404710 
08:25:10 

404740 
08:25:40 
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Figure 4-26. Case 6 - Elemental Filter 45 Probability and Residual Time Histories 
(Incorrect Ambiguities) 

This is the first case where the MMAE converges to the wrong elemental filter (and 

ambiguity set), even though the correct ambiguity set is in one of the elemental filters. 

Because an incorrect filter's residuals are smaller than the correct filter's residuals for a 

period of time, the MMAE shifts the probability toward the wrong filter. The pruning 

logic then deletes the correct filter from the solution before the MMAE has a chance to 

shift the probability back to the correct elemental filter. Close to the end of the data run 

all of the elemental filter 38 measurement residuals are increasing. This would normally 

cause the MMAE to shift the probability toward another elemental filter, possibly the 

correct elemental filter.   However, because the pruning logic removed all of the other 
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elemental filters, the MMAE must continue to use elemental filter 38 as the correct 

solution. 

This case clearly shows the weakness in the current algorithm's pruning logic design. 

Once the pruning logic deletes the elemental filters from the MMAE there is no way to 

add additional elemental filters to check or recheck different ambiguity sets. An MMAE 

is a Multiple Model Adaptive Estimator. Removing elemental filters, in a desire to 

achieve the true fixed-integer solution, limits the ability of the MMAE to adapt or change 

its solution. When the MMAE is reduced to one elemental filter it can no longer adapt to 

any changes, as it is forced to use the one remaining hypothesis, even if it is the incorrect 

hypothesis. These problems point to many possible improvements in the current 

algorithm. A simple modification of not deleting the elemental filters from the MMAE 

would allow the MMAE to continually adapt to changes. The overall MMAE estimate 

can then be a blending of only those elemental filters with a high conditional probability 

of being the correct solution. Additional modifications might include deleting "bad" 

elemental filters, but then adding elemental filters to recheck ambiguity sets, or ambiguity 

sets close to the elemental filter that has the highest probability. Additional 

improvements to limit the chances of the MMAE converging the wrong solution might be 

to continuously cross check the MMAE solution with the floating-point solution. The 

two solutions should be closely related (within a few meters), and if they are not the 

MMAE could be reinitialized, or different ambiguity sets could be used. 
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4.3.4   Case 7: 32.2 km Baseline, 10,000 fi Altitude, Widelane Measurements 

Case 7 is similar to Cases 5 and 6, except the baseline distance to the test aircraft was 

increased to 32.2 km. The time history position performance of the floating-point filter 

and the MMAE for the entire data run are shown in Figure 4-27 and Figure 4-28, 

respectively. As shown in Figure 4-28, the MMAE very quickly and smoothly converges 

to the correct elemental filter and the true fixed-integer solution. 

The large "spike" in the floating-point filter solution at 7:47:30 is due to a bad 

pseudorange measurement. Again, because the MMAE only uses carrier phase 

measurements, the bad pseudorange measurement only affected the floating-point filter 

solution. 

Once again the correct ambiguity set was placed in elemental filter 1, and an incorrect 

ambiguity set (one incorrect ambiguity) was placed in elemental filter 2.   The true 

ambiguities and the ambiguities in the elemental filters are shown below in Table 4-10. 

Table 4-10. Case 7 - True Ambiguities vs. Elemental Filter Ambiguities 

True 
Ambiguity 

1081928 -1205221 210188 -1885413 5587938 

EF#1 1081928 -1205221 210188 -3181105 5587938 

EF#2 1081928 -1205221 210188 -3181105 5587939 
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Figure 4-27. Case 7 - Floating-Point Filter Position Errors 
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The conditional probability time histories and three of the measurement residual time 

histories for elemental filters 1 and 2 are shown in Figure 4-29 and Figure 4-30 

respectively. Figure 4-30 shows the elemental filter 2 residuals for the entire data run, 

even though the elemental filter was deleted from the MMAE 21 seconds after the start of 

the data run. 

As seen in Figure 4-29, the elemental filter 1 residuals were all very close to zero for 

the entire data run. This allowed elemental filter 1 to absorb over 90 percent of the 

conditional probability in the first 10 seconds. The MMAE converged to elemental filter 

1 (the correct solution) 32 seconds after the start of the data run. In contrast, the 

elemental filter 2 residuals (Figure 4-30) either show a constant bias or and increase in 

magnitude over the 7 minutes of data. 

The MMAE converged very quickly to the correct solution due to the almost ideal 

behavior of the elemental filter 1 residuals. The performance of this algorithm (and most 

other carrier-phase ambiguity resolution algorithms) is very dependent on the "quality" of 

the data set. A clean data set, or even a period of clean data within a data set, can 

dramatically improve the performance of an algorithm, and is a very typical problem with 

most carrier-phase ambiguity resolution routines. 
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4.4    Summary 

This chapter presented the performance results of an MMAE-based carrier-phase 

integer ambiguity resolution algorithm. The results were broken up into ground and 

flight test cases, with each case representing a difference distance, or distance and 

altitude from the reference receiver. Each case used real world data from Ashtech Z- 

surveyor receivers at both the reference and remote (or airborne) locations. 

During ground tests, the MMAE was very efficient at determining the carrier-phase 

integer ambiguities at short baseline distances. As expected, the MMAE required more 

time to determine the correct integer ambiguity set as the baseline distances increased. In 

addition, even though the accuracy of the new algorithm degraded as baseline distances 

increased, the new algorithm provided a more accurate position solution than a floating- 

point DGPS solution. In most cases, the MMAE solution was as accurate, if not more 

accurate, than the floating-point solution as it converged to the true fixed-integer solution. 

In all cases, the MMAE solution was accurate to the centimeter level once it converged to 

the correct elemental filter. During the final ground test, the new algorithm demonstrated 

the ability of the MMAE to converge to the best possible ambiguity set in the elemental 

filters even if the correct ambiguity set is not available. Even thought the MMAE 

converged to the best possible solution, improvements to algorithm to increase the 

probability of the correct solution being available within the MMAE were suggested. 

During flight tests, the correct integer ambiguity set was not initially generated by the 

candidate ambiguity set generation subroutine, which suggests numerous improvements 

are required in the candidate ambiguity set generation subroutine. Therefore, the correct 

carrier-phase integer ambiguity set was artificially placed in one of the elemental filters. 
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Once the correct solution was available to the MMAE, the MMAE was generally able to 

determine the correct carrier-phase integer ambiguities, but the results were inconsistent. 

In two of the three flight test cases presented, the MMAE converged to the correct 

solution. In the remaining case, the MMAE converged to the wrong solution even 

thought the correct solution was available. In this case, the correct filter was prematurely 

removed from the MMAE by the pruning logic before the MMAE was able to converged 

to it. This problem suggests improvements not in the MMAE, but in the pruning logic. 

By removing the elemental filters the MMAE cannot adapt to changes, and is forced to 

converge to whatever solution is available. Numerous simple changes may be made in 

the pruning logic to improve the overall performance of the algorithm. 

The actual position solution accuracy of the new algorithm, under flight test 

conditions, was not always more accurate than the floating-point filter. Before the 

MMAE converged to the correct elemental filter, when the conditional probability shifted 

to an incorrect elemental filter, the MMAE solution was less accurate than the floating- 

point filter solution. These large initial errors were again due to the poor candidate 

ambiguity sets generated initially used in the elemental filters, again suggesting 

improvements in the floating-point filter and its role in the candidate ambiguity set 

generation subroutine. However, once the MMAE converged to the correct solution, it 

generated a navigation solution with centimeter level accuracy 

In all ground test and flight test cases, even when the MMAE converged to the wrong 

solution, it very smoothly and quickly converged to a fixed-integer solution. There were 

no discontinuities or jumps in its solution typical of other carrier-phase ambiguity 

resolution routines. 
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5 Conclusions and Recommendations 

5.1    Overview 

This research presented the theory, modeling methodology, and results of a GPS 

carrier-phase integer ambiguity resolution algorithm based on a multiple model Kaiman 

filter. Previous research in this area considered the use of MMAE algorithms for many 

purposes such as detection of failed actuators or sensors and GPS spoofing and jamming. 

Other research included extensive study into stand-alone integer ambiguity resolution 

algorithms, including both ambiguity set generation and ambiguity set determination. 

This research represents the first known use of an MMAE algorithm in the carrier-phase 

ambiguity resolution problem. The focus was not in the generation of ambiguity sets, but 

in the determination of the correct ambiguity set while using all available information to 

improve the GPS navigation solution. 

Two different extended Kaiman filter models were developed for this thesis: a 

floating-point DGPS filter and the elemental filters within the MMAE structure. Both of 

the filters incorporated a linear dynamics model with a nonlinear measurement model. 

The floating-point DGPS filter was used to initialize the MMAE, but more importantly, 

its outputs were used to generate the candidate ambiguity set used in the elemental filters 

in the MMAE. The elemental filters in the MMAE were each based on a different 

candidate ambiguity set in order to determine the correct integer ambiguity set, while 

using all available information to provide an accurate navigation solution. The standard 

MMAE structure was also modified to incorporate filter pruning and to use the latest 
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measurement, or "post-fit" residuals, in the MMAE conditional probability calculations, 

rather than conventional filter residuals. Both static ground tests and flight tests were 

conducted to verify the performance of the new algorithm. 

5.2    Conclusions 

The new algorithm developed in this thesis performed extremely well during the 

ground tests and flight tests analyzed throughout this research. The new algorithm was 

able to determine the correct carrier-phase ambiguities quickly and provided an accurate 

navigation solution. The new algorithm showed the additional benefit of transitioning 

rapidly and smoothly from a floating-point position solution to a fixed-integer position 

solution. In all cases, once the MMAE converged to the correct elemental filter, the 

solution was an order of magnitude more accurate than the floating-point filter solution, 

and provided a centimeter level accurate solution. 

Of the ground test cases presented in Chapter 4, each shows the new algorithm will 

converge to the correct integer ambiguity set, and hence the correct fixed-integer 

solution, as long as the correct ambiguity set is in one of the elemental filters. The new 

algorithm essentially instantaneously resolved the correct carrier-phase ambiguities for 

short baseline distances. As expected, the algorithm's performance degraded as the 

baseline distance from the reference receiver was increased. The MMAE also showed 

the ability to converge to the best possible solution, if the correct solution was not 

available as a hypothesis within the MMAE. In all cases, the MMAE smoothly 

approached the fixed-integer solution without the discontinuities typical of most carrier- 

phase ambiguity resolution algorithms. In addition, while transitioning to the fixed- 
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integer solution, the MMAE solution was generally more accurate than the floating-point 

solution. 

For flight tests, the algorithm showed performance improvements over current 

algorithms even though the results were not as consistent as during the ground tests. For 

flight tests, the new algorithm was again able to determine the correct carrier-phase 

integer ambiguities (after the correct solution was artificially placed in an elemental 

filter), but the results were inconsistent due to problems in the pruning logic. In two of 

the three cases presented, the MMAE converged to the correct solution. Before the 

MMAE converged to the correct elemental filter, when the conditional probability shifted 

to an incorrect elemental filter, the MMAE solution was sometimes less accurate than the 

floating-point filter solution. However, these results were a direct function of the 

ambiguity sets generated by the floating-point filter and the ambiguity set generation 

subroutine, and not a function of the performance of the MMAE. Improving the 

performance of the floating-point filter and the ambiguity set generation subroutine will 

improve the performance of the overall algorithm. The MMAE solution smoothly and 

rapidly transitioned to a fixed-integer solution, and once the MMAE converged to the 

correct solution, its accuracy was at the cm-level — an order of magnitude more accurate 

than the floating-point solution. 

In the one remaining flight test case, the MMAE converged to the wrong solution, 

even thought the correct solution was available in an elemental filter. The MMAE 

initially shifted the probability weight to an incorrect filter, and then the pruning logic 

deleted the correct filter before the conditional probability could be shifted back to the 

correct elemental filter.   The MMAE converged to the wrong solution due to faulty 
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pruning logic and not as a result of the MMAE design. This case illustrated the need for 

careful engineering judgment in removing elemental filters from the MMAE. All of the 

tradeoffs must be considered before removing elemental filters and reducing or 

eliminating the ability of an MMAE to adapt to changes in the overall system. Numerous 

simple changes in the current pruning logic will greatly improve the performance of the 

algorithm. 

Although not the focus of this research, the ability of the new algorithm to resolve the 

carrier-phase ambiguities correctly depends directly on the correct ambiguity set being 

hypothesized by one of the elemental filters. The current ambiguity set generation 

algorithm does not guarantee that the correct ambiguity set is available in one of the 

elemental filters. While this thesis focused on the ability of an MMAE to determine the 

correct carrier-phase ambiguity set, any future implementation of the algorithm created in 

this research must include advanced routines to improve the probability of the correct 

ambiguity being available as a solution in the MMAE. 

The ground test and flight test profiles used in this research were adequate to test the 

performance of the algorithm and determine the effects of error sources in a DGPS 

application. This research has shown that under ground and flight test conditions, an 

MMAE can quickly and accurately resolve GPS carrier-phase ambiguities. For all but 

one case, the algorithm converged to the correct ambiguity set and provided a centimeter 

level accurate navigation solution. The limited results presented in this thesis are highly 

encouraging and warrant further research. 
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5.3    Recommendations 

This initial attempt at using a multiple model adaptive filter to determine the correct 

carrier-phase integer ambiguities performed well enough to continue development. 

However, there are many modifications that may be made to the current algorithm to 

improve its performance. 

The following recommendations are provided to extend this research and increase the 

usefulness of the current algorithm: 

1. The performance of the MMAE directly depends on the correct ambiguity set being 

hypothesized by one of the elemental filters. To improve the performance of the 

algorithm it should be modified to: 

a Incorporate a larger number of elemental filters to improve the chance of the 

correct ambiguity set being hypothesized by one of the elemental filters. 

However, if the current Bayesian approach (weighted blending of the 

elemental filter solutions) is used to generate the overall MMAE state 

estimate, increasing the number of elemental filters will increase the effect of 

incorrect solutions on the final MMAE estimate. In addition, adding 

elemental filters increases the required computational power and memory. 

Q Allow the floating-point filter more time to estimate the carrier-phase 

ambiguities before its estimate is used to generate candidate ambiguity sets. 

Currently,  the  candidate  ambiguity  sets  are  generated  after only  one 
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propagate and update cycle of the floating-point filter. Allowing the 

floating-point filter more than one cycle before using its solution to generate 

the candidate ambiguity sets would improve the likelihood of the correct 

ambiguity set being generated by the Z-transform and FASF routines. 

a Reset some elemental filters with ambiguity sets "close to" (as determined by 

the appropriate search space) the "correct" elemental filter once the MMAE 

has converged to an elemental filter. If the "correct" elemental filter contains 

the true integer ambiguity set, the MMAE will again converge to it as the 

fixed-integer solution. 

Q Reset the elemental filters every M sample periods using the current 

candidate ambiguity set generation subroutine. This method is similar to the 

previous recommendation, but alleviates the need to determine what 

ambiguity sets are "close to" the "correct" elemental filter. It also allows the 

candidate ambiguity set generation subroutine to use the most recent 

ambiguity estimates from the floating-point filter. 

Q Perform some type of 'likelihood test" [25] on the elemental filters to 

provide insight into the "correctness" of the solution and the ambiguity sets 

in the elemental filters. If the solution has a low likelihood of being correct, 

the elemental filter(s) may be reset with different ambiguity sets. 
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2. The current algorithm design uses a Bayesian estimator (weighted blending of the 

elemental filter solutions) for the final MMAE state estimates. To achieve the true 

fixed-integer solution with the Bayesian estimator, the algorithm also uses pruning 

logic to delete "bad" elemental filters. To improve the performance of the algorithm, 

the final MMAE estimate, and avoid the problem of possibly pruning the correct 

elemental filter, the algorithm should be modified to: 

a Not prune bad elemental filters, or not prune all but one elemental filter from the 

MMAE. This recommendation removes the problem of the MMAE losing its 

ability to adapt to system changes, and the possibility of removing the correct 

elemental filter from the MMAE. The overall MMAE solution would be a type of 

blending or weighted blending of the elemental filters remaining in the MMAE. 

a Change the Bayesian estimator to a blended weighting scheme similar to the one 

described in reference [10], where the overall estimate is still a weighted average 

of elemental filter solutions. However, only those elemental filters with a 

conditional probability higher than some predetermined threshold are used in the 

final MMAE estimate. If the threshold is set high enough (but not restrictively 

high) this recommendation removes the need to eliminate elemental filters, and if 

the conditional probability of the "bad" elemental filters is below the threshold, 

then the final MMAE estimate will be the true fixed-integer solution. 
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3. The floating-point filter position solution is only used to initialize and reinitialize the 

MMAE. The two solutions should be closely related, generally within a few meters 

based on the accuracy of the floating-point filter. Therefore, the floating-point filter 

could be used to cross check the MMAE solution. If the solutions differ by a 

predetermined amount, the MMAE could be reinitialized, or different ambiguity sets 

could be generated and used in the MMAE 

4. Modify the MMAE design to also include information from a "whiteness" test [15] 

[25] when trying to determine which elemental filter contains the correct carrier- 

phase ambiguity set. A whiteness test may not be an efficient way to initially 

determine the correct carrier-phase ambiguity, but after a few sample periods it may 

add enough additional information to stop the MMAE from incorrectly weighting an 

elemental filter whose residuals are momentarily small as they pass with a slope 

through zero. 

5. Increase the order of the floating-point filter to include states for residual differential 

tropospheric errors and multipath errors to improve the performance of the floating- 

point filter. Improving the performance of the floating-point filter will improve the 

performance of the candidate ambiguity subroutine, and hence increase the likelihood 

that an elemental filter will contain the correct ambiguity set. In addition, a better 

floating-point filter solution will help the initialization and therefore the transient 

response of the MMAE. 
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6. Incorporate logic to handle the addition of new satellites to the GPS solution 

efficiently. Currently, when a satellite is added to the navigation solution, the MMAE 

is completely reinitialized to the floating-point filter, and new candidate ambiguity 

sets are generated. The removes any information or advantage already gained by the 

MMAE. The performance of the algorithm would be improved by the using the 

previous MMAE solution to reinitialize all of the elemental filters and to generate 

new candidate ambiguity sets. The algorithm might also be changed to estimate the 

ambiguity of the new measurement accurately and incorporate it into the MMAE 

without reinitializing the entire MMAE. 

7. Change the algorithm to a moving bank MMAE design. Instead of fixing the 

ambiguity sets hypothesized by the elemental filters, allow the MMAE to move 

throughout the search space to find the correct elemental filter. 

8. Modify the current algorithm to estimate/resolve LI, L2 and widelane 

ambiguities independently and simultaneously. Widelane ambiguities are a linear 

combination of LI and L2 ambiguities, and the additional ambiguity estimates 

could be used to validate the other ambiguity solutions, and/or increase the 

accuracy of the MMAE final solution. 
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Appendix A. Flight Test Profiles 

INTRODUCTION 

The flight tests described in this Appendix were flown as part of a combined Air 

Force Institute of Technology (AFIT) and USAF Test Pilot School (USAF/TPS) research 

and flight test program. Flight test points and maneuvers were divided into primary and 

secondary flight test points. The specific flight test points, maneuvers, and techniques 

flown during this thesis are described in the following sections. Due to funding 

limitations and time constraints not all test points detailed below were accomplished 

during the flight test phase of this research. Only the primary flight test points were 

accomplished. 

PRIMARY FLIGHT TEST POINTS 

The steady flight test points shown in Table A-l were the primary data points. Figure 

A-l gives a graphical illustration of the primary flight test point profiles. These flight test 

points started over the reference receiver location (Point A), flew out to the arc distance 

(Point B), flew the desired arc (Point C), then flew a straight line back to the reference 

receiver (Point A). The arc distance was defined as the horizontal distance from the GPS 

reference station to the test aircraft (Point A to B). The time listed for each test point 

combination of arc distance and altitude was the estimated total time required to fly the 

entire route - from the reference receiver to the arc, the arc, and then back to the reference 

receiver.   The arc time was the estimated length of time data will be collected, at the 
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required arc distance and altitude, while flying each arc. The arc times listed in Table 

A-l were based on a 0.6 Mach number. The number of runs listed in Table A-l was the 

required number of data runs at each test point. Primary data point flight test tolerances 

are listed in Table A-2. 

Table A-l. Primary Flight Test Data Points 

Arc Distance 

Pressure Altitude 10 nm 20 nm 30 nm 60 nm 100 nm 

10,000 ft 7 min 15 min 22 min X X 
20,000 ft 7 min 15 min 22 min 32 min X 
30,000 ft 7 min 15 min 22 min 32 min 60 min 

Approx. Arc Time 4 min 8 min 12 min 12 min 26 min 

Number of Runs 3 2 2 1 1 

Table A-2. Primary Flight Test Data Point Tolerances 

Parameter Tolerance 
Arc Distance ± 10% of Arc Distance or 5 nm whichever is less 
Altitude ± 1,000 ft 
Approx. Arc Time ± 1 min if Arc Distance <30 nm, otherwise ± 2 min 

Arc Distance 

Arc 
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Figure A-l. Primary Flight Test Point Profile 

SECONDARY FLIGHT TEST POINTS 

Dynamic flight test points, or secondary data points, were started at the flight 

conditions shown in Table A-3. The letters in Table A-3 at each test point combination 

of arc distance and altitude refer to a specific flight test maneuver, described below. 

Secondary data point tolerances are listed in Table A-4. 

Level Turns 

A constant load factor level turn was accomplished to investigate angular acceleration 

effects on position and velocity accuracy. These turns were accomplished at load factors 

of 1.4G, 2G and 3G. Each maneuver was completed at an airspeed required to maintain 

the constant load factor. 

Wind-Up Turn 

A constant speed Wind Up Turn (WUT) was completed to investigate angular 

acceleration rate effects on position and velocity accuracy. The WUT maneuver varied 

load factor (G) from IG to a maximum of 6G at an onset rate of IG per 4 seconds. 

Push Over I Pull Up 
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A Push Over / Pull Up was completed to investigate vertical acceleration effects on 

position and velocity accuracy. The Push Over / Pull Up varied load factor (G) from OG 

to a maximum of 3G at an onset rate of IG per 4 seconds. 

Table A-3. Secondary Flight Test Data Points 

Arc Distance 

Pressure Altitude 10 nm 20 nm 30 nm 

10,000 ft A,B,C A,B,C A,B,C 
20,000 ft A,B,C A,B,C A,B,C 

Table A-4. Secondary Flight Test Data Point Tolerances 

Parameter Tolerance 
Arc Distance Arc distances shown (± 10%) are conditions for the 

start of the maneuver. The Arc Distance may vary as 
necessary to complete the maneuver. 

Altitude ± 2,000 ft 
Airspeed / Mach ± 10 KIAS / ± 0.05 Mach 
Load Factor ±0.2G 

Descending Turn 

An additional secondary flight test point was a Descending Turn. This maneuver 

investigated altitude effects on position and velocity accuracy. The maneuver was flown 

at an arc distance of 5 (±1) nm from the reference receiver, and a VVI of 4000 (±200) 

fpm. The maneuver will start at 30,000 ft PA and end at 10,000 ft PA. 

REFERENCE RECEIVER LOCATION 
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The reference receiver station for all flight test was located at the following WGS-84 

coordinates 

Latitude 
(Degrees: Minutes: Seconds) 

Longitude 
(Degrees: Minutes: Seconds 

Altitude (m) 

34 : 55 : 19.88982 -117:53:27.38584 679.8870 
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